

Prenex Normal Form Theorem

— Exercises 28

Course: 701

Instructor: Dr. Farmer

Presentation by: Huidong(Dennis) Tian

Abstract

- What is Prenex Normal Form (PNF)
- Prove Prenex Normal Form Theorem
- Steps for transforming to PNF
- Example of transforming to PNF
- Motivation of transforming to PNF

What is Prenex Normal Form (PNF)

j is in prenex form (prenex normal form) if it is of the form

$$Q_1 X_1 \dots Q_n X_n y$$

where each $Q_i \in \{\$, "\}$, X_i are distinct predicate parameters, $Q_1 X_1 \dots Q_n X_n$ are called quantified prefix, and y is quantifier free.

Prenex Normal Form Theorem

Every formula j has a logically equivalent formula j' in prenex form.

i.e. for every formula j of L (a language of first-order logic), there is a formula j' of L in prenex normal form such that $j \ll j'$ is valid.

Proof by Induction

1. Base Case: $P(t_1, \dots, t_k)$
2. φ is $\neg \psi$:
3. φ is $\forall x. \psi$:
4. $\varphi = \varphi_1 \vee \varphi_2$:

Convention:

We denote φ' as PNF of φ .

2. φ is $\neg\psi$:

- a) $\psi' = Q_1 x_1 \dots Q_n x_n \theta$ (by induction)
where θ is quantifier free
- b) $\neg\psi \Leftrightarrow \neg Q_1 x_1 \dots Q_n x_n \theta \Leftrightarrow \underline{Q_1} x_1 \dots \underline{Q_n} x_n \neg\theta$
where $\underline{Q_i}$ is dual of Q_i , i.e. if $Q_i = \exists$ then $\underline{Q_i} = \forall$,
if $Q_i = \forall$ then $\underline{Q_i} = \exists$
- notice: $\neg \forall x. \varphi \Leftrightarrow \exists x. \neg\varphi$

3. φ is $\forall x. \psi$:

- a) $\psi' = Q_1 x_1 \dots Q_n x_n \theta[x \rightarrow x']$ (by induction)
where x' is a variable that does not occur in ψ
- b) $\forall x. \psi \Leftrightarrow \forall x' Q_1 x_1 \dots Q_n x_n \theta[x \rightarrow x']$
notice: if x appears free in ψ , then we do not
need to substitute x by x'

4. φ is $\varphi_1 \vee \varphi_2$:

- a) Take φ_1 to φ'_1 and take φ_2 to φ'_2 (by induction)
notice: by using renaming to make quantified variables
of φ'_1 do not occur in φ'_2 and vice versa.
- b) Let $\varphi'_1 = p_1 \theta_1$ and $\varphi'_2 = p_2 \theta_2$
where p_i is the **quantified prefix** of a formula
- c) $\varphi_1 \vee \varphi_2 \Leftrightarrow (p_1)(p_2)(\theta_1 \vee \theta_2)$
notice: we can shuffle p_1 and p_2 , i.e. the order of
quantified variable in quantified prefix does not
matter

Steps for transforming to PNF

1. Eliminate implication and equivalence constructor

$$p \Leftrightarrow q \equiv p \Rightarrow q \vee q \Rightarrow p \quad 1.1$$

$$p \Rightarrow q \equiv \neg p \vee q \quad 1.2$$

2. Move negation down to atomic formulae

$$\neg(p \vee q) \equiv \neg p \wedge \neg q \quad 2.1$$

$$\neg(p \wedge q) \equiv \neg p \vee \neg q \quad \text{De Morgan law} \quad 2.2$$

$$\neg \forall x. \varphi \Leftrightarrow \exists x. \neg \varphi \quad 2.3$$

$$\neg \exists x. \varphi \Leftrightarrow \forall x. \neg \varphi \quad 2.4$$

Steps for transforming to PNF Con't.

3. Rename bound variables if necessary
4. Move quantifiers to the left

$$\forall x \varphi(x) \vee \psi \equiv \forall x (\varphi(x) \vee \psi) \quad 4.1$$

$$\forall x \varphi(x) \wedge \psi \equiv \forall x (\varphi(x) \wedge \psi) \quad 4.2$$

$$\forall x \varphi(x) \wedge \forall x \psi(x) \equiv \forall x (\varphi(x) \wedge \psi(x)) \quad 4.3$$

$$\forall x \varphi(x) \vee \forall x \psi(x) \equiv \forall x \forall y (\varphi(x) \vee \psi(x)[x \rightarrow y']) \quad 4.4$$

$$\exists x \varphi(x) \vee \exists x \psi(x) \equiv \exists x (\varphi(x) \vee \psi(x)) \quad 4.5$$

$$\exists x \varphi(x) \wedge \exists x \psi(x) \equiv \exists x \exists y (\varphi(x) \wedge \psi(x)[x \rightarrow y']) \quad 4.6$$

transforming to PNF Example

$$\forall x_0 (\forall x_1 \varphi(x_1, x_0) \rightarrow \exists x_1 \psi(x_0, x_1))$$

$$\Leftrightarrow \forall x_0 (\neg \forall x_1 \varphi(x_1, x_0) \vee \exists x_1 \psi(x_0, x_1)) \quad 1.2$$

$$\Leftrightarrow \forall x_0 (\exists x_1 \neg \varphi(x_1, x_0) \vee \exists x_1 \psi(x_0, x_1)) \quad 2.3$$

$$\Leftrightarrow \forall x_0 (\exists x_1 \neg \varphi(x_1, x_0) \vee \exists x_2 \psi(x_0, x_2)) \quad 3$$

$$\Leftrightarrow \forall x_0 \exists x_1 \exists x_2 (\neg \varphi(x_1, x_0) \vee \psi(x_0, x_2)) \quad 4.5$$

$$\Leftrightarrow \forall x_0 \exists x_1 \exists x_2 (\varphi(x_1, x_0) \rightarrow \psi(x_0, x_2)) \quad \text{reintroduce } \rightarrow$$

Motivation

- It simplifies the surface structure of the sentence.
- It is useful for Skolemization
- It is useful for automated theorem proving

QUESTIONS