

# Base Negative Two

Presenter: Keith Mackay  
Revised: December 2, 2002

# Bases

- A Base is the building block of mathematics.
- Most commonly used is base 10
- Other common bases include Bases 2, 8 and 16.

# Historical Facts

- The Unary (Base 1) system has been dated to 37 000 years ago.
- Base 5 and 10 systems were not far behind.
- A method for writing numbers in base 10 is dated to approximately 9000 years ago.

# Counting

| <b>Base 2</b> | <b>Base 8</b> | <b>Base 10</b> | <b>Base 16</b> | <b>Base -2</b> |
|---------------|---------------|----------------|----------------|----------------|
| 00000         | 00            | 00             | 00             | 00000          |
| 00001         | 01            | 01             | 01             | 00001          |
| 00010         | 02            | 02             | 02             | 00110          |
| 00011         | 03            | 03             | 03             | 00111          |
| 00100         | 04            | 04             | 04             | 00100          |
| 00101         | 05            | 05             | 05             | 00101          |
| 00110         | 06            | 06             | 06             | 11010          |
| 00111         | 07            | 07             | 07             | 11011          |
| 01000         | 10            | 08             | 08             | 11000          |
| 01001         | 11            | 09             | 09             | 11001          |
| 01010         | 12            | 10             | 0A             | 11110          |
| 01011         | 13            | 11             | 0B             | 11111          |
| 01100         | 14            | 12             | 0C             | 11100          |
| 01101         | 15            | 13             | 0D             | 11101          |
| 01110         | 16            | 14             | 0E             | 10011          |
| 01111         | 17            | 15             | 0F             | 10011          |
| 10000         | 20            | 16             | 10             | 10000          |

# How to think of bases

Humans work almost entirely in base 10. So for simplicity all formulas will be provided in terms of base 10.

If we are given some  $x$ , which is separated into columns corresponding with its base, we can convert it to a base 10 numbers as follows:

$$x_n \times b^n + x_{n-1} \times b^{n-1} + \dots + x_2 \times b^2 + x_1 \times b^1 + x_0 \times b^0$$

# Example of conversion

Consider the following two examples:

$$\begin{aligned}01111_2 &= 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \\&= 0_{10} + 8_{10} + 4_{10} + 2_{10} + 1_{10} \\&= 15_{10}\end{aligned}$$

$$\begin{aligned}13_8 &= 1 \times 8^1 + 3 \times 8^0 \\&= 8_{10} + 3_{10} \\&= 11_{10}\end{aligned}$$

# Example of Base -2

Base 2 example again:

$$\begin{aligned}01111_2 &= 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \\&= 0_{10} + 8_{10} + 4_{10} + 2_{10} + 1_{10} \\&= 15_{10}\end{aligned}$$

Base (-2) example:

$$\begin{aligned}01111_{-2} &= 0 \times (-2)^4 + 1 \times (-2)^3 + 1 \times (-2)^2 + 1 \times (-2)^1 + 1 \times (-2)^0 \\&= 0_{10} + (-8)_{10} + 4_{10} + (-2)_{10} + 1_{10} \\&= -5_{10}\end{aligned}$$

# Properties of Base -2

- A negative number has an even number of bits,  
A positive number has an odd number of bits.
- Negation looks at the LSB, if it is a 0, it recursively looks at LSB + 1. If it is a 1, then for every odd bit (1, 3, 5...), the bit to the left is inverted, except for the MSB.

# Properties of Base -2

- Shifting the bits to the left is a multiplication by -2, and shifting to the right a division by -2.
- Increment is fairly straight forward, consider increment in binary, but remember that base -2 relies on successive bits being the negative of the previous.  
(i.e. carry 11 as opposed to simply 1)
- Addition and subtraction are similarly based on increment.

# Practical examples

- In the 1950s, Poland produced the only two computers based on Base -2, called SKRZAT 1, and BINEG. Unfortunately, they never caught on.
- Data transfers can be smaller as we are no longer restricted to transfer data in terms of 32- or 64-bit words.

# Problems with Base -2

- Very difficult to understand, it is not very intuitive.
- The idea of negative bases was only been around since 1885, and was not even looked at again until 1936.

# References

- **Base Valued Numbers**  
<http://www.psinvention.com/zoetic/basenumb.htm>
- **Mathworld: Base**  
<http://mathworld.wolfram.com/Base.html>
- **The art of Computer Programming**  
Volume 2: Seminumerical Algorithms, Donald E. Knuth