

Presentation

Formalize Boolean Algebra in FOL

Topic 21 (Exercise 31 e)

Jason Hu

huxy@mcmaster.ca

Boolean Algebra

- An abstract mathematical system primarily used in computer science and in expressing the relationships between sets
- (Paul 1963, p.8) A set together with
 - Two distinct and distinguished elements: 0, 1
 - Two 2-placed operations: +, *
 - A 1-placed operation: \neg
 - Satisfying several laws

- commutative laws
- associative laws
- distributive laws
- idempotent laws
- absorption laws
- de Morgan's laws
- laws of zero and one
- law of double negation

Formalize Boolean Algebra in FOL

- *Theory* $T=(L, \Gamma)$
- $L=(V, \{0,1\}, \{+, *\}, \neg, \emptyset)$
 - $L = (V, C, F, P)$
 - $C = \{0,1\}$ where 0, 1 are distinct distinguished constant symbols
 - $F = \{+, *\}, \neg$ where +, * are 2-placed function symbols, \neg is 1-placed function symbol
 - $P = \emptyset$

Axioms

- **Associative Laws**

- $x + (y + z) = (x + y) + z$

- $x * (y * z) = (x * y) * z$

- **Commutative Laws**

- $x + y = y + x$

- $x * y = y * x$

- **Idempotent Laws**

- $x + x = x$

- $x * x = x$

- **Distributive Laws**

- $x + (y * z) = (x + y) * (x + z)$

- $x * (y + z) = (x * y) + (x * z)$

- **Absorption Laws**

- $x + (x * y) = x$

- $x * (x + y) = x$

- De Morgan laws

- $\overline{x+y} = \overline{x} \cdot \overline{y}$

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

- Laws of zero and one

- $x+0=x$

$$x \cdot 0 = 0$$

- $x+1=1$

$$x \cdot 1 = x$$

- $0 \neq 1$

$$\overline{0} = 1 ; \overline{1} = 0$$

- $\overline{x+x} = \overline{x}$

$$\overline{x \cdot x} = 0$$

- Law of Double negation

- $x = \overline{\overline{x}}$

Example of Boolean Algebra

- $\langle D, \cup, \cap, \neg, \emptyset, X \rangle$
 - \emptyset, X are empty set and full set
 - \cup, \cap, \neg are union, intersection, complementation operator
- $\langle D, \vee, \wedge, \top, \text{true}, \text{false} \rangle$

Partial Order \leq

- A Partial order can be defined on D by $x \leq y$ iff $x + y = y$.
- *Given any two elements $x, y \in D$,*
 - *Least upper bound of x and y is $x + y$*
 - *Greatest lower bound of x and y is x^*y*
- *Boolean algebra has the structure of lattice*

Reference

- **Model theory** by C.C.Chang and H.J.Keisley
- **Lectures on Boolean Algebra** by Paul R. Halmos
- **Boolean algebra and its applications** by J. Eldon Whitesitt