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Naive vs. Axiomatic Set Theory

Loosely 
Defined 

Concepts

Naive Set Theory

Example:  Cantor’s Definition of a Set
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Naive vs. Axiomatic Set Theory

Rigorously 
Defined 

Concepts

Axiomatic Set Theory

All of Cantor’s Theorems can be rigorously 
described in terms of 3 Axioms
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Cantor’s Axioms

A1)  Extensionality: two sets are identical if they 
have the same elements 

A2)  Abstraction: for any given property there is a 
set whose members are just those 
entities having that property

A3) Choice: If B is a set, all of whose elements are 
non-empty sets, (no two of which have 
any elements in common), then there is 
a set C which has precisely one element 
in common with each element of By
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Cantor’s Axioms

∃y ∀x [x∈y ↔ ϕ(x)]

A2)  Abstraction: for any given property there is a 
set whose members are just those 
entities having that property
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∃y ∀x [x∈y ↔ ϕ(x)]
The set of all things which have the property of:

not being 
members of  
themselves

being an 
ordinal

being a 
set

Russell’s 
Paradox

Burali-Forti’s
Paradox

Cantor’s 
Paradox

Set-Theoretical Paradoxes
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Cantor’s Paradox

Also known as “The Paradox of Cardinality”

• Let C be the universal set and P(C) be its power set

• Since P(C) is a set (the set of all subsets of C) it must 
be contained within C (because C contains all sets), so

|P(C)| ≤ |C|

• However, by Cantor’s Theorem

|C| < |P(C)|

Contradiction
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Cantor’s Theorem

• Let A be any set and P(A) be its power set

|A| < |P(A)|
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Cantor’s Theorem…

• Recognize the existence of an injective function

f: A → P(A)
a → {a} for instance

A P(A)

a

c

b

…

{a}

{c}

{b}

…
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Cantor’s Theorem…

|A| ≤ |P(A)|

Now, if |A| = |P(A)|
then f would also have to be surjective
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Cantor’s Theorem…

f: A → P(A), where f is surjective

B = {x ∈ A | x ∉ f(x)} ⊂ A

∃z ∈ A | f(z) = B

A P(A)

a

b

{b}

{a, b}

B {a}z

Consider a 
function which 
maps as in the 

diagram

Then consider 
the 

consequences 
of a set 

defined as B
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Cantor’s Theorem

|A| < |P(A)|

f: A → P(A), Injective
but not surjective

z ∈ B ⇒ z ∉ B z ∉ B ⇒ z ∈ B

Contradiction
So f cannot be surjective
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Set Theoretical Axioms

The Axiom of Abstraction basically states 
that a formula that specifies any property 
can define a set

This non-constrained axiom allowed for the 
existence of some sets which do not exist

The barber’s town

The Universal Set
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Set Theoretical Axioms

The Axioms of Zermello-Fraenkel Set 
Theory build in constraints to avoid the 
allowance of such sets.  

Axiom of Foundation (A6)

Axiom of Separation (A7)

Axiom of Replacement (A8)
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Questions??

Contents of today’s presentation 
can be found at:

http://www.cas.mcmaster.ca/~wmfarmer/CAS- …
… 701- 02/contributions/index.html


