

Compactness Theorem for First-Order Logic

CAS 701 Presentation
Exercise 30 part a

Presented by : Shahram Siavash

Date : November 11, 2002

Department of Computing and Software
McMaster University

Compactness Theorem

Let Π be any set of formulas of first-order logic. Then Π is satisfiable if every finite subset of Π is satisfiable.

Proof (Using Completeness Theorem)

- If Π is finite, then the proof is obvious since Π is a finite subset of itself so it's satisfiable.
- Proof by contradiction. Suppose Π is unsatisfiable.
- By Gödel's completeness theorem, Π is inconsistent in F (sound and complete formal system for first-order logic)

$$\Pi \models_F \square, \square \square$$

- There is a proof in F from Π for both \square and $\square \square$

- A proof consists of a finite sequence of formulas.
- Let $P = \text{set of formulas from } \Pi \text{ which are used in the proof}$
 - P is finite and is a subset of Π
 - $P \Vdash_{\mathbb{F}} \Pi, \Box\Box$
 - $P \models \Pi, \Box\Box$ since \mathbb{F} is sound

This means that P is unsatisfiable. Contradicting the assumption, so Π is satisfiable.

Question Overview

- Use the compactness theorem to prove that every first-order theory that has arbitrarily large finite models, has an infinite model.
- Let $T = (L, \Pi)$

- Define

$$f_k = \exists x_1 \exists x_2 \dots \exists x_k . (x_1 \neq x_2) \wedge (x_1 \neq x_3) \wedge \dots (x_{k-1} \neq x_k)$$

$$S = \bigcup \{f_k \mid k \geq 2\} \quad \text{includes infinite number of formulas}$$

- Any model satisfying S will be infinite.
- Let A be a finite subset of S and K be the maximum index of f_k in A .
- Every model with cardinality greater than or equal to K that satisfies \Box will satisfy A .
- Every finite subset of S is satisfiable
- By using compactness theorem, we conclude that S is satisfiable and its model should be infinite.
- Every model that satisfies S , will also satisfy \Box so T has an infinite model.

References:

1. <http://cheng.ececs.uc.edu/cs543/4-29.html>
2. <http://www.trentu.ca/academic/math/sb/pcml/pcml-i-15.pdf>