

The Theory of a Complete Ordered Field

Presentation prepared and presented by Joe Fakhri
Date Revised: November 26, 2002

Outline

- Simple Type Theory
- Definitions
- Axioms of a Field
- Axioms of an Ordered Field
- Completeness Axiom
- Conclusion

Simple Type Theory

A theory of STT is the following tuple: $T = (L, \Gamma)$

A language of STT is a tuple $L = (v, C, \tau)$ where:

- v is an infinite set of symbols called variables
- C is set of symbols called constants
- τ : a total function $C \rightarrow \mathcal{T}$

Γ : Axioms of T

Definitions

- The theory of a complete ordered field:
 $(D, +, -, 0, \times, -1, 1, <)$. ι is type of elements in D .

$$\tau (+) = (\iota \rightarrow (\iota \rightarrow \iota))$$

$$\tau (-) = (\iota \rightarrow \iota)$$

$$\tau (\times) = (\iota \rightarrow (\iota \rightarrow \iota))$$

$$\tau (-1) = (\iota \rightarrow \iota)$$

$$\tau (0) = \iota$$

$$\tau (1) = \iota$$

$$\tau (<) = (\iota \rightarrow (\iota \rightarrow *))$$

$$\mathcal{C} = \{+, \times, -1, -, <, 0, 1\}$$

Notations:

$$a + b \quad \text{denotes} \quad +(a, b)$$

$$a + (-a) \quad \text{denotes} \quad +(a, -(a))$$

$$a \times b \quad \text{denotes} \quad \times(a, b)$$

Field Axioms

- A field is a nonempty set with 2 functions \times & $+$ satisfying the following axioms:
 - Axiom 1: (Associative Laws)
 - $\forall a, b, c: \text{I. } (a + b) + c = a + (b + c)$
 - $\forall a, b, c: \text{I. } (a \times b) \times c = a \times (b \times c)$
 - Axiom 2: (Commutative Laws)
 - $\forall a, b: \text{I. } a + b = b + a$
 - $\forall a, b: \text{I. } a \times b = b \times a$

Axioms of a Field (continued)

- Axiom 3: (Distributive Law)
 - $\forall a, b, c: \mathbb{I}. a \times (b + c) = (a \times b) + (a \times c)$
 - $\forall a, b, c: \mathbb{I}. (a + b) \times c = (a \times c) + (b \times c)$
- Axiom 4: (Existence of identities)
 - $\forall a: \mathbb{I}. a + 0 = a$
 - $\forall a: \mathbb{I}. a \times 1 = a$
- Axiom 5: (Existence of inverse)
 - Additive inverse: $\forall a: \mathbb{I}. a + (-a) = 0$
 - Multiplicative Inverse: $\forall a: \mathbb{I}. \neg(a=0) \Rightarrow a \times (-1(a)) = 1$

Axioms of a Field (continued)

- Example of a field: the set of rational numbers **Q** and set of real numbers **R**.
- Additive and multiplicative identities of a field F are unique.
 - Proof: suppose e_1 and e_2 are both mult. identities in D then $e_1 = e_1 \times e_2$ and $e_2 = e_2 \times e_1 \Rightarrow e_1 = e_2$
 - Suppose e_1 and e_2 are both additive identities in F then $e_1 = e_1 + e_2$ and $e_2 = e_2 + e_1 \Rightarrow e_1 = e_2$

Axioms of an Ordered Field

- An ordered field is a linearly ordered field by $<$
 - Axioms for the theory of linear orders is as follows:
 - Axiom 6: Irreflexivity: $\forall a: \mathbb{I}. \neg(a < a)$
 - Axiom 7: Transitivity: $\forall a, b, c: \mathbb{I}. (a < b) \wedge (b < c) \Rightarrow (a < c)$
 - Axiom 8: Trichotomy: $\forall a, b: \mathbb{I}. (a < b) \vee (b < a) \vee (b = a)$
 - Just as the distributive law links together $+$ and \times , we need rules to tell us how $+$ and \times affect the ordering of elements of our field, therefore we define the following 2 axioms:
 - Axiom 9: $\forall a, b, c: \mathbb{I}. (a < b) \Rightarrow (a + c) < (b + c)$
 - Axiom 10: $\forall a, b: \mathbb{I}. (0 < a) \wedge (0 < b) \Rightarrow (0 < a \times b)$

Axioms of an Ordered Field (continued)

- Example : we need to derive that: $(0 < a) \wedge (0 < b) \Rightarrow (0 < a + b)$
 1. $(0 < a) \wedge (0 < b)$
 2. $(0 + (-b)) < (b + (-b))$ (by axiom 9)
 3. $-b < 0$ (from 2)
 4. $(-b < 0) \wedge (0 < a) \Rightarrow (-b < a)$ (by axiom 8)
 5. $(-b + b) < (a + b)$ (by axiom 9)
 6. $0 < (a + b)$ (from 5) \Rightarrow derived

Axioms of an Ordered Field (continued)

- Examples:
 - The Rational numbers \mathbf{Q} are an ordered field
 - Real numbers \mathbf{R} are an ordered field
 - Let F be the set $\mathbf{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$ on which $+$ and \times are defined. F is a field under these operations but when we define an ordering $0 < 1 < 2 < 3 < 4 < 5 < 6$ on F , then F is not an ordered field under this ordering.
 - Solution: with this given ordering we have $0 < 1$ but if we add 6 then we produce a contradiction. $0+6 < 1 + 6 \Rightarrow 6 < 0$

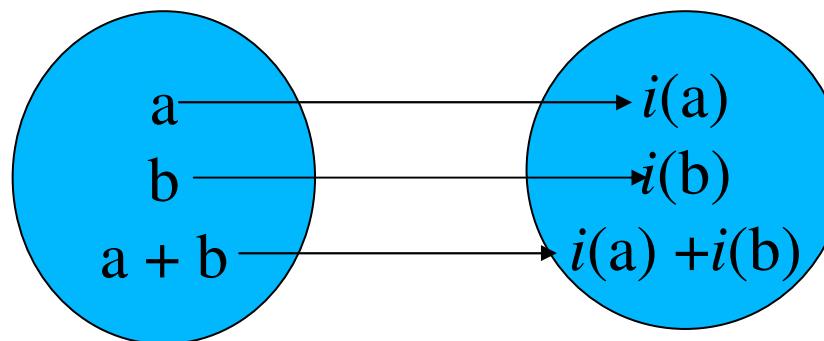
Completeness Axiom

- Every non-empty set which is bounded above has a least upper bound.
- Definition of bounded above: A subset S of an ordered field F is bounded above, if there exist $M \in F$ such that $x < M$ for all $x \in S$
- Completeness Axiom: (Axiom 11)
 - $\forall S: (\iota \rightarrow *). ((\exists x: \iota. S(x)) \Rightarrow [\exists b: \iota. (\text{upper}(S, b) \wedge \forall c: \iota. \text{upper}(S, c) \Rightarrow b < c)])$
 - Where: $\text{upper}(S, a) = \forall x: \iota. S(x) \Rightarrow x < a$

Completeness Axiom

(continued)

- The existence of a complete ordered field is the set of real numbers denoted by **R**
- If **F1** and **F2** are both complete ordered fields then we can show that there exist a bijective function i : $F1 \rightarrow F2$ such that $i(a+b) = i(a) + i(b)$, $i(a \times b) = i(a) \times i(b)$, and $a < b \Leftrightarrow i(a) < i(b)$



Therefore **F1** and **F2** are the same.
The function i is called an
order isomorphism

Conclusion

- The existence of such an order isomorphism shows that the real numbers are essentially unique.

Therefore the real numbers are the only

Complete Ordered Field

References

- <http://www.math.unl.edu/~webnotes/classes/class03/class03.htm>
- <http://www.gap-system.org/~john/analysis/Tutorials/T3.html>
- http://www.math.louisville.edu/~lee/RealAnalysis/ra_sect02.pdf
- <http://www.math.niu.edu/~rusin/known-math/index/12-XX.html>
- <http://www.math.louisville.edu/~lee/02Spring501/chapter2.pdf>
- <http://mathworld.wolfram.com/Field.html>

Note: This presentation will be posted on:

<http://www.cas.mcmaster.ca/~fakhrijm/home.html>