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Simple Type Theory

A theory of STT is the following tuple: T = (L, Γ) 
A language of STT is a tuple L = (ν,&, τ) where:

– ν is an infinite set of symbols called variables

– & is set of symbols called constants

– τ: a total function & D

Γ : Αxioms of T



Definitions

• The theory of a complete ordered field: 
(D, +, −, 0, ×, -1, 1, <) . ι is type of elements in D. 

&� �{+, ×, -1, −, <, 0, 1}

Notations:

a + b        denotes     +(a, b)

a + (−a)   denotes     +(a, −(a))

a × b       denotes     ×(a, b)

τ (+) = (ι (ι ι))

τ (−) = (ι ι)

τ (×) = (ι (ι ι))

τ (-1) = (ι ι)

τ (0) = ι

τ (1) = ι

τ (<) = (ι (ι *))



Field Axioms

• A field is a nonempty set with 2 functions × & + 
satisfying the following axioms:
– Axiom 1: (Associative Laws)

• ∀a, b, c: ι. (a + b) + c = a + (b + c)
• ∀a, b, c: ι. (a × b) × c = a × (b × c)

– Axiom 2: (Commutative Laws)
• ∀a, b: ι. a + b = b + a
• ∀a, b: ι. a × b = b × a



Axioms of a Field (continued)

– Axiom 3: (Distributive Law)
∀a, b, c: ι. a × (b + c) = (a × b) + (a × c)

∀a, b, c: ι. (a + b) × c = (a × c) + (b × c)

– Axiom 4: (Existence of identities)
∀a: ι. a + 0 = a

∀a: ι. a × 1 =a

– Axiom 5: (Existence of inverse)
Additive inverse: ∀a: ι. a + (−a) = 0
Multiplicative Inverse: ∀a: ι. ¬ (a=0) => a × (-1(a)) = 1



Axioms of a Field (continued)

Example of a field: the set of rational numbers Q and 
set of real numbers R.

Additive and multiplicative identities of a field F are 
unique.

Proof: suppose e1 and e2 are both mult. identities in D then 
e1 = e1 × e2 and e2 = e2 × e1=> e1 = e2

Suppose e1 and e2 are both additive identities in F then 
e1=e1 + e2 and e2 = e2 + e1 => e1 = e2



Axioms of an Ordered Field

An ordered field is a linearly ordered field by <
– Axioms for the theory of linear orders is as follows:

Axiom 6: Irreflexitivity: ∀a: ι. ¬(a < a)

Axiom 7: Transitivity: ∀a, b, c: ι. (a < b) ∧ (b < c) =>(a < c)

Axiom 8: Trichotomy: ∀a, b: ι. (a < b) ∨ (b < a) ∨ (b = a) 

– Just as the distributive law links together + and ×, we need 
rules to tell us how + and × affect the ordering of elements 
of our field, therefore we define the following 2 axioms:

Axiom 9: ∀a, b, c: ι. (a < b) => (a + c) < (b + c)

Axiom 10: ∀a, b: ι. (0 < a) ∧ (0 < b) => (0 < a × b)



Axioms of an Ordered Field (continued)

Example : we need to derive that: (0 < a) ∧ (0 < b)
=> (0 < a + b)

1. (0 < a) ∧ (0 < b)

2. (0 + (−b)) < (b + (−b)) (by axiom 9)

3. − b < 0 (from 2)

4. (− b < 0) ∧ (0 < a) => (− b < a) (by axiom 8)

5. (− b + b) < (a + b) (by axiom 9)

6. 0 < (a + b)  (from 5) => derived 



Axioms of an Ordered Field (continued)

Examples:
– The Rational numbers Q are an ordered field

– Real numbers R are an ordered field

– Let F be the set Z7 = {0, 1, 2, 3, 4, 5, 6} on which + 
and × are defined. F is a field under these operations but 
when we define an ordering 0<1<2<3<4<5<6 on F, then 
F is not an ordered field under this ordering.

Solution: with this given ordering we have 0 < 1 but if we 
add 6 then we produce a contradiction. 0+6 < 1 + 6 => 6< 0



Completeness Axiom

Every non-empty set which is bounded above has a least 
upper bound.

Definition of bounded above: A subset S of an ordered 
field F is bounded above, if there exist M�F such that 
x< M for all x � S

Completeness Axiom: (Axiom 11)

– ∀S: (ι *). ((∃ x:ι. S(x)) => [∃ b: ι. (upper (S, b) ∧
∀c: ι. upper (S, c) => b < c )]) 

– Where: upper (S, a) = ∀x: ι. S(x) => x < a



Completeness Axiom
(continued)

The existence of a complete ordered field is the set 
of real numbers denoted by R

If F1 and F2 are both complete ordered fields then 
we can show that there exist a bijective function i: 
F1 F2  such that i(a+b) = i(a) + i(b), i(a×b)=i(a) ×
i(b), and a < b <=> i(a) < i(b)

a
b

a + b

i(a)
i(b)

i(a) +i(b)

Therefore F1 and F2 are the same.
The function i is called an 
order isomorphism



Conclusion

The existence of such an order isomorphism 
shows that the real numbers are essentially 
unique. 

Therefore the real numbers are the only

Complete Ordered Field
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