

Exercise 9

Let $f: A \xrightarrow{\text{R}} B$ and $g: B \xrightarrow{\text{R}} C$ be total, and let $h = g \circ f: A \xrightarrow{\text{R}} C$ be the composition of g and f .

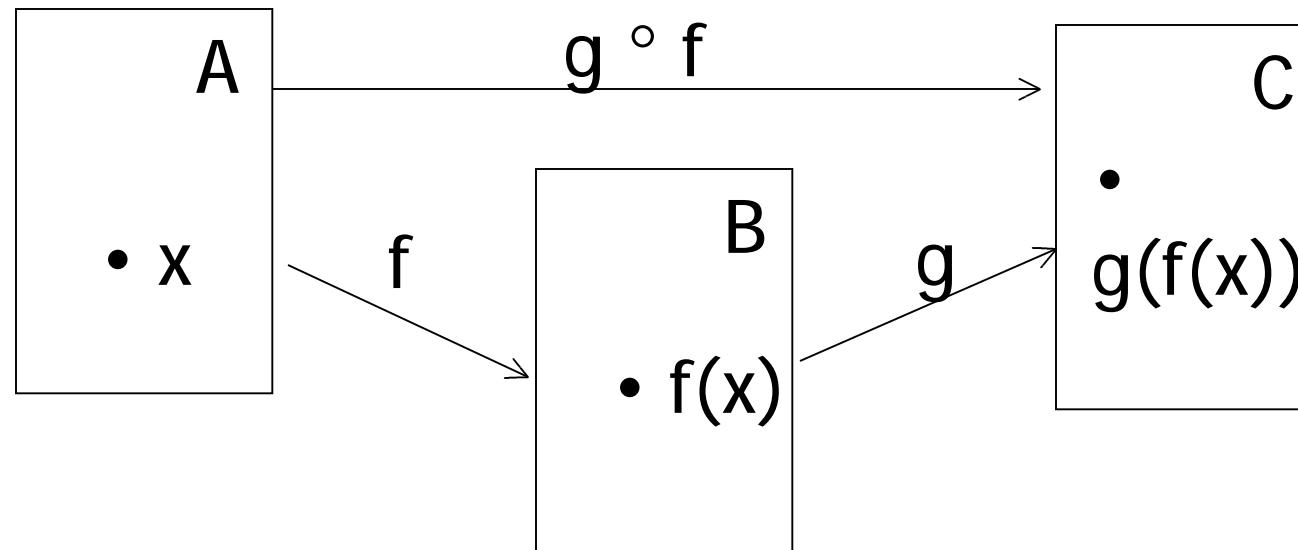
- (a) Prove that, if f and g are injective, then h is injective, but the converse is false.
- (b) Prove that, if f and g are surjective, then h is surjective, but the converse is false.

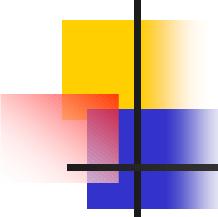
By
Lei Lai

The definition of composition

The composition of the functions $g \circ f$ is defined by the assignment

$$\forall x \in D_{g \circ f}, g \circ f(x) = g(f(x)).$$





f, g are injective $\Rightarrow h$ is injective

Proof:

Suppose $h(a_1) = h(a_2)$, where $a_1, a_2 \in A$.

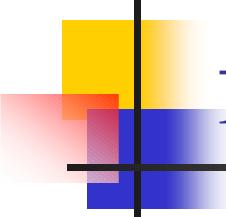
Then, by the definition of composition,

$$g(f(a_1) = g(f(a_2)).$$

Since g is injective, we know $f(a_1) = f(a_2)$.

Since f is injective, we know $a_1 = a_2$.

Thus, $h(a_1) = h(a_2) \Rightarrow a_1 = a_2$, which is the definition of an injective function. Thus, h is injective.



f, g are surjective $\Rightarrow h$ is surjective

Proof:

Let c be an arbitrary element of C .

Since g is surjective, $\exists b \in B$ such that $g(b) = c$.

Furthermore, since f is surjective, $\exists a \in A$ such that $f(a) = b$.

Therefore,

$$g(f(a)) = g(b) = c, \text{ or } g \circ f(a) = c.$$

h is surjective.

h is injective \Rightarrow g is injective ?

h is surjective \Rightarrow f is surjective ?

Counterexample:

$f: A \rightarrow B$ and $g: B \rightarrow C$;

$A = \{a\}$, $B = \{b, d\}$, $C = \{c\}$,

$$A \xrightarrow{f} B \xrightarrow{g} C$$

$f(a) = b$,

$g(b) = c$, $g(d) = c$,

$$a \xrightarrow{f} b \xrightarrow{g} c$$

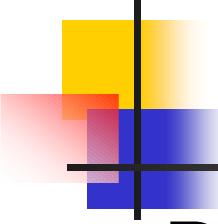
 $d \swarrow$

$h(a) = g \circ f(a) = c$.

h is surjective and injective,

but f is not surjective,

and g is not injective.



h is injective $\Rightarrow f$ is injective

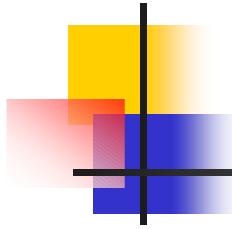
Proof:

Suppose $f(a_1) = f(a_2)$, $f(a_1), f(a_2) \in B$.

Because g is total, with the definition of composition, we have

$$h(a_1) = g(f(a_1)) = g(f(a_2)) = h(a_2).$$

Thus the injectivity of h provides $a_1 = a_2$ as desired.



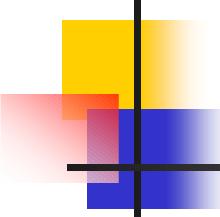
h is surjective $\Rightarrow g$ is surjective

Proof:

Let c be an arbitrary element of C . Since h is surjective, there must $\exists a \in A$ such that $h(a) = c$.

By the definition of composition, $\exists b \in B, f(a)=b$ and $g(b) = c$.

Thus, g is surjective.



Conclusion

- if f and g are injective, then h is injective.
- if f and g are surjective, then h is surjective.
- if f and g are bijective, then h is bijective.

- if $h = g \circ f$ is injective, then f is injective.
- if $h = g \circ f$ is surjective, then g is surjective.
- if $h = g \circ f$ is bijective, then f is injective, g is surjective.