

Theory of Lattices In FOL

Jun Wu

Nov, 2002

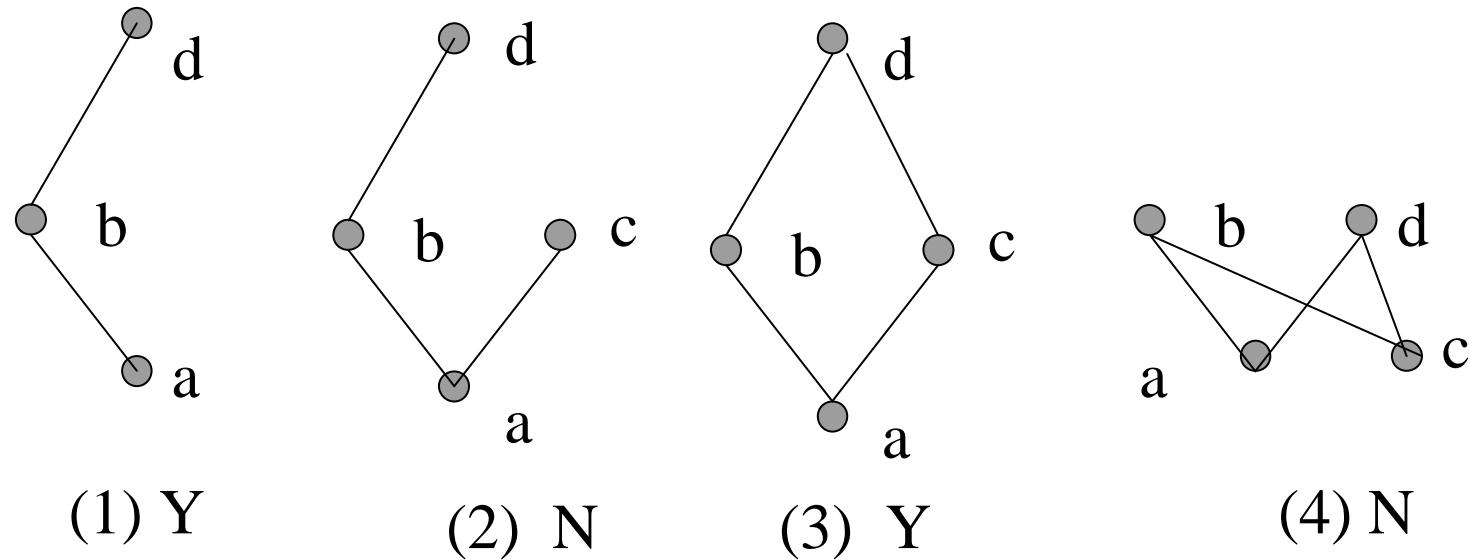
What is Lattices (view of set theory)

Lattice (D, \leq, \cup, \cap)

$\leq \subseteq D \times D$, $\cup: D \times D \rightarrow D$, $\cap: D \times D \rightarrow D$

- (D, \leq)
Partial order set
- \cup (Join)
Every subset $\{a, b\}$ has a (unique) least upper bound in D ,
denote as $a \cup b$, a join b
- \cap (meet)
Every subset $\{a, b\}$ has a (unique) greatest lower bound in D ,
denote as $a \cap b$, a meet b

Lattices and Not Lattices

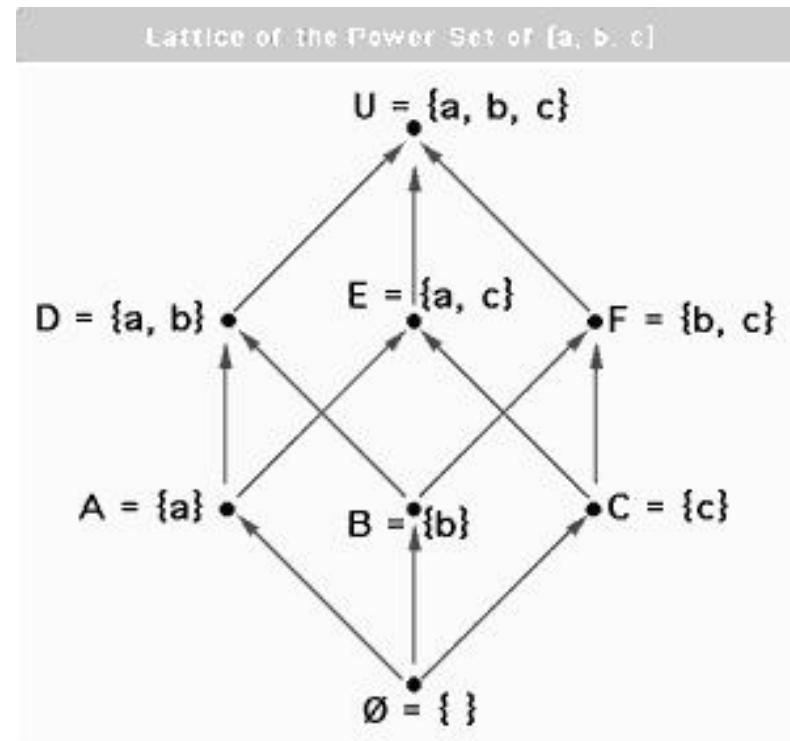


1. total order is lattice $x \leq y \Rightarrow (x \cup y) = y$ (Least upper bound)
 $(x \cap y) = x$ (Greatest lower bound)
2. form lattice from partial order.

Example of Lattices

Lattice (D, \leq, \cup, \cap)

D : Power set of $\{a, b, c\}$
 \leq : if $x \leq y$, iff $x \subseteq y$
 \cup (join) : union of subsets of power set
 \cap (meet): intersection of subset sets of power set



Theory of Lattices

$$T = \{ L, \Gamma \}$$

$$L = \{V, \Phi, \{\cup, \cap\}, \{\leq\}\}$$

Γ : Axioms

1. $\forall x. x \leq x$ (*Reflexive*)
2. $\forall x, y. (x \leq y) \wedge (y \leq x) \Rightarrow (x = y)$ (*Antisymmetry*)
3. $\forall x, y, z. (x \leq y) \wedge (y \leq z) \Rightarrow (x \leq z)$ (*Transitivity*)
4. $\forall x, y, z \exists u. (((x \leq u) \wedge (y \leq u)) \wedge ((x \leq z) \wedge (y \leq z) \Rightarrow (u \leq z)))$
(Least upper bound)
5. $\forall x, y, z \exists u. (((u \leq x) \wedge (u \leq y)) \wedge ((z \leq x) \wedge (z \leq y) \Rightarrow (z \leq u)))$
(Greatest lower bound)

What is Lattices (view of algebra)

Lattice (D, \cup, \cap)

$\cup: D \times D \rightarrow D, \cap: D \times D \rightarrow D$

- $x \cap x = x, x \cup x = x$ (*Idempotency*)
- $x \cap y = y \cap x, x \cup y = y \cup x$ (*Commutativity*)
- $(x \cap y) \cap z = x \cap (y \cap z)$ (*Associativity*)
 $(x \cup y) \cup z = x \cup (y \cup z)$
- $x \cap (x \cup y) = x, x \cup (x \cap y) = x$ (*Absorption identities*)

Theory of Lattices (view of algebra)

$$T = \{ L, \Gamma \}$$

$$L = \{ V, \Phi, \{ \cup, \cap \}, \Phi \}$$

Γ : Axioms

- $\forall x. x \cap x = x, x \cup x = x$ (*Idempotency*)
- $\forall x, y. x \cap y = y \cap x$ (*Commutativity*)
 $\forall x, y. x \cup y = y \cup x$
- $\forall x, y, z. (x \cap y) \cap z = x \cap (y \cap z)$ (*Associativity*)
 $\forall x, y, z. (x \cup y) \cup z = x \cup (y \cup z)$
- $\forall x, y. x \cap (x \cup y) = x$ (*Absorption identities*)
 $\forall x, y. x \cup (x \cap y) = x$

Lattices and Boolean Algebra

Boolean lattice

- Boolean algebra is a boolean lattice
- Is a lattice a boolean algebra?

Complementarity

$$x \cup y = 1, x \cap y = 0$$

1: universal upper bound 0: universal lower bound

Distributivity

$$x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$$

$$x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$$

Conclusion

- A lattice as an algebra and a lattice as a poset are “equivalent” concepts.
 - 1. Let the poset $L = (D, \leq, \cup, \cap)$ be a lattice. Set $x \cap y = \text{GLB } \{x, y\}$ and $x \cup y = \text{LUB } \{x, y\}$. Then the algebra $L = (D, \cup, \cap)$ is a lattice.
 - 2. Let the algebra $L = (D, \cup, \cap)$ be a lattice. Set $x \leq y$ iff $x \cap y = x$. Then $L = (D, \leq, \cup, \cap)$ is a poset, and the poset is a lattice.

References

1. Introduction to Lattice theory *by D.E. Rutherford*
2. Lattice theory *by George Gratzer*
3. Lattice theory *by Thomas Donnellan*
4. [http://www.rci.rutgers.edu/~cfs/472_html/
Learn/SimpleLattice_472.html](http://www.rci.rutgers.edu/~cfs/472_html/Learn/SimpleLattice_472.html)