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Let f: N-> N generate the Fibonacci sequence.
Define f by recursion via a monotone functional.
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Fibonacci Sequence

* The Fibonacci numbers are defined by the
following recurrence:

Fo=0

Fy=1

F.=F,+F, 1=2
 The sequence:

0,1,1,2,3,5,8,13,21,34,55,..



Recursion via a monotone functional
R=(Afib,F) where
- A=(L,I" ): standard theory of real Arithmetic

- fib is a constant of type N N notin L

-F =2g:N N. A n:N. if (n<2, n, g(n-1)+g(n-2))



F Is a monotone functional

 fib =F fib, observe:

FOg=0 ={)

FIg=FQ ={0->0)}

F2@ =F (F Q) ={0->0,1->1}
F3@=F (F(FQ)) ={0->1,1->1,2->1)

FAG=F(FFFG))) ={0>1,1->1,2->1,3->2)
OCFQCF @GCF2@CF3@C ... CF1000000 @C

« Fo@is the least fixed point of F



Recursion via a monotone functional

* The defining axiom of R is ¢ which says
“fib is a least fixed point of F”.

* The definitional extension resulting from R
is the theory (L U {fib}, T" U {¢}).
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