

Presentation

Exe 15

Suppose $P=(S, \leq)$ is preorder. Define a nontrivial equivalence relation R on S such that the quotient structure P/R is partial order

By Zhuomei

Preorder

A binary relation \leq over a set S is a preorder if it has following properties:

- Reflexive: for all a in S , $a \leq a$
- Transitive: for all a, b and c in S ,
if $a \leq b$ and $b \leq c$ then $a \leq c$

Partial Order

A binary relation \leq over a set S is a partial order if it has following properties:

- Reflexive: for all a in S , $a \leq a$
- Transitive: for all a, b and c in S ,
if $a \leq b$ and $b \leq c$ then $a \leq c$
- Antisymmetric:
for all a, b in S , if $a \sim b$ and $b \sim a$
then $a = b$

Equivalence Relation

A binary relation \sim over a set S is a equivalence relation if it is

- Reflexive: for all a in S , $a \sim a$
- Transitive: for all a, b and c in S ,
if $a \sim b$ and $b \sim c$ then $a \sim c$
- Symmetric: for all a, b in S ,
if $a \sim b$ then $b \sim a$

Quotient Set

Given a set S and an equivalence relation \sim over S , the quotient set written as S/\sim , is the set of all equivalence classes in S under equivalence relation \sim .

Example:

If S is the set of all cars and \sim is the equivalence relation of “having the same color”, then the set of all green cars and the set of all white cars are different equivalence classes. S/\sim could be identified with the set of all car colors.

Equivalence Class

Given a set S . a is an element in set S . Equivalence class is a subset of S , and satisfies $\{x \in S \mid x \sim a\}$ where \sim is an equivalence relation. This equivalence class is denoted as $[a]$

- Any two equivalence classes are either equal or disjoint, that is, the set of all equivalence classes of S forms a partition of S
- The property of an equivalence relation $a \sim b$ if and only if $[a] = [b]$

Suppose $P = (S, \leq)$ is preorder. Define a nontrivial equivalent relation R on S such that the quotient structure P/R is partial order

We may take two steps:

- Find an equivalence relation R over set S
- Find a binary relation \sim over the set of equivalence classes and then prove this binary relation \sim is a partial order

we define a binary relation R on set S : for all a, b in S ,
if $a \leq b$ and $b \leq a$ then $a R b$ (\leq is preorder on S)

Prove binary relation R is an equivalence relation

- for all a in S , $a \leq a \rightarrow a R a$ (reflexive)
- for all a, b and c in S , if $a R b$ and $b R c$, then
 - $a \leq b, b \leq c$ and $c \leq b, b \leq c$
 $\rightarrow a \leq c$ and $c \leq a$
 - $\rightarrow a R c$ (transitive)
- for all a, b in S , from $a R b$, we can get
 - $a \leq b, b \leq a$
 $\rightarrow b R a$ (symmetric)

We can get conclusion that R is an equivalence relation over set S .

Define a binary relation \sim on the set of equivalence classes:
for all elements of Set S a and b, if $a \leq b$, define $[a] \sim [b]$

Prove that binary relation \sim is a partial order

- reflexive $a \leq a \rightarrow [a] \sim [a]$
- transitive $[a] \sim [b]$ and $[b] \sim [c]$
 - $\rightarrow a \leq b$ and $b \leq c$
 - $\rightarrow a \leq c$ (\leq has transitive property)
 - $\rightarrow [a] \sim [c]$
- antisymmetric
 - $[a] \sim [b]$ and $[b] \sim [a]$
 - $\rightarrow a \leq b$ and $b \leq a$
 - $\rightarrow a R b$ (definition of equivalence relation R)
 - $\rightarrow [a] = [b]$ (property of equivalence relation)

That means that \sim is a partial order on the set of equivalence classes