
STT and the ML
Programming Language

Kevin Everets
December 2, 2002

Overview

� A Brief History of ML

� ML and STT

� Ocaml and Some Examples

� Real World Usage

� Conclusion

A Brief History of ML

� ML: ``Meta-Language'' (not really)

� Developed in late 1970's at Edinburgh University
for LCF Proof Assistant

� ~1984 Caml: Caml-Light & Ocaml (INRIA, Fr)

� Categorical Abstract Machine Language

� ~1997 SML (Standard ML): SML/NJ & mosml

ML and STT

� Typing very similar, eg in ML:

let add x y = x + y ;;

val add : int -> int -> int = <fun>

� Similar to:

(lambda x,y: i. x + y)

(i -> (i -> i))

ML and STT (cont'd)

true ;;

- : bool = true

not true ;;

- : bool = false

let compose f g x = f(g(x)) ;;

val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>

compose fact succ 8 ;;

- : int = 362880

ML and STT (cont'd)

� Main Types: Boolean, Integer, Float, Char,
String, Unit (like void), Tuples (and Records),
and Lists

� Possible to define more types; 2 major families:

� product types for tuples or records

� sum types for unions

� For example, creating a complex type:

type complex = { re: float; im: float } ;;

type complex = { re: float; im: float }

Ocaml

� Safe: compiler performs many sanity checks

� Static types, but compiler infers types!

� Fully Functional: Can pass functions as
arguments

� Automatic Memory Management & Garbage
Collection

� Efficient Compiler: can generate native or byte
code.

� Object Oriented, Powerful Libraries, and so much
more!

Some (more) Examples

� Recursive functions easy to express:

let rec fact n = if n = 0 then 1 else fact(n-1)*n;;

val fact: int -> int = <fun>

fact 8 ;;

- : int = 40320

� Equality's type:

(=) ;;

- : 'a -> 'a -> bool = <fun>

More Examples

� Identity Function:

let id x = x ;;

val id : 'a -> 'a = <fun>

id 3 ;;

- : int = 3

id 3.2 ;;

- : float = 3.2

id false ;;

- : bool = false

Real World Usage

� Many programs written in ML and Ocaml

� MMM: Web Browser

� http://pauillac.inria.fr/mmm/eng.htm

� ICFP Contest: 2000 was to write a ray-tracer

� http://www.cs.cornell.edu/icfp/

� MLDonkey: eDonkey2000 client (and more)

� http://www.nongnu.org/mldonkey/

Conclusion

� ML is a good example of STT in practice

� It is actually very useful due to the compactness
of the source code, the safety enforced by the
compiler, and the efficiency of the resulting
binary code

� STT is a Good Thing

References

� FOLDOC (Free On-Line Dictionary of Computing)

� http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?ML

� O'Reilly Book: Developing Applications with
Objective Caml

� http://caml.inria.fr/oreilly-book/

� INRIA's Caml Pages:

� http://caml.inria.fr/index-eng.html

