

Topic 12: Show how to construct a Universal Turing Machine

Prepared and Presented by: Joe Fakhri
Revised October 16, 2002

Outline

- What is a Turing Machine? (a quick intro)
- Construction of a Universal Turing Machine

What is a Turing Machine?

- Formal definition: it is a quadruple $M=(K,\Sigma,\delta,s)$
- K is a finite set of states
- $s \in K$ is the initial state
- Σ is a finite set of symbols (Σ is the alphabet)
- Σ always contains the special symbols \sqcap and \blacktriangleright denoting the blank and first symbols

What is a Turing Machine? (continued)

- δ is the transition function which maps:
 $K \times \Sigma$ to $(K \cup \{h, \text{“yes”}, \text{“no”}\}) \times \{\leftarrow, \rightarrow, -\}$
- Function δ is the “program” of the machine. For each current state $q \in K$ and a current symbol $\sigma \in \Sigma$, it specifies a triple $\delta(q, \sigma) = (p, \rho, D)$, where p is the next state, ρ is the symbol to be overwritten on σ , and $D \in \{\leftarrow, \rightarrow, -\}$
- The input string is initialized to a \blacktriangleright followed by a finitely long string $x \in (\Sigma - \{\blacktriangleright\})$

Construction of a Universal Turing Machine

- A universal Turing machine interprets the input as a description of another Turing machine M , concatenated with a description of the input x .
- We denote it as $U(M; x) = M(x)$
- Assumptions:
 - no priori bounds on number of states and symbols that U must face

∴ both states and their symbols are integers

Construction of a Universal Turing Machine

(continued)

- For any Turing machine $M=(K, \Sigma, \delta, s)$ we assume :
 - $\Sigma = \{1, 2, \dots, |\Sigma|\}$ and $K = \{|\Sigma| + 1, |\Sigma| + 2, \dots, |\Sigma| + |K|\}$
 - $|\Sigma| + 1$ is the starting state
 - Numbers $|K| + |\Sigma| + 1, \dots, |K| + |\Sigma| + 6$ will encode the special symbols.
 - All numbers will be processed by U as binary numbers with $\lceil (\log|K| + |\Sigma| + 6) \rceil$ bits
 - Introduce leading zeros to make all numbers of the same length

Construction of a Universal Turing Machine

(continued)

- A description of the Turing machine M will start by the number $|K|$ in binary, followed by $|\Sigma|$, followed by a description of δ as $((q, \sigma), (p, \rho, D))$.
 - Symbols “(“, “)”, “;”, ” etc \in Alphabet of U
- The description of M is followed by a “;” followed by a description of the input x .
 - x ’s symbols are also encoded in binary integers separated by “;”

Construction of a Universal Turing Machine

(continued)

- The universal Turing machine U on input M ; x simulates M on input x (it seems U has two strings)
- U uses its second string to store M 's configuration
 - Configuration of the following form (w, q, u)
- To simulate a step of U :
 - U scans its second string until it finds the binary description of an integer corresponding to a state
 - It searches the first string for a rule of δ matching the current state
 - If a rule is located, M moves to the left in the 2nd string to compare symbols
 - If no match then another rule is sought
 - If there is a match the rule is implemented (ie. Change current symbol, state and direction)

References

- "Computational Complexity", by Christos H. Papadimitriou
- Introduction to Automata Theory, Languages, and Computation, by John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, SECOND EDITION
- <http://mathworld.wolfram.com/TuringMachine.html>
- Note: This presentation is posted on :
www.cas.mcmaster.ca/~fakhrijm/home.html