Computing and Software 701

Logic and Discrete Mathematics In Software Engineering

Fall 2002

Exercises

Revised: 03 December 2002

- 1. What did A. Fraenkel contribute to ZF set theory?
- 2. Describe one of the set-theoretic paradoxes other than Russell's Paradox.
- 3. What is the cardinality of the function space $\mathbf{N} \to \mathbf{N}$, where \mathbf{N} denotes the set of natural numbers?
- 4. (a) Let T_n be a full binary tree of height $n \ge 1$. What is the cardinality of the set of nodes in T_n ? What is the cardinality of the set of paths in T_n ?
 - (b) Let T_{∞} be a full binary tree of infinite height. What is the cardinality of the set of nodes in T_{∞} ? What is the cardinality of the set of paths in T_{∞} ?
- 5. State and prove the de Morgan Laws for sets.
- 6. Prove the Schröder-Bernstein Theorem that says, if $f : A \to B$ and $g : B \to A$ are total injective functions, then there exists a total bijective function $h : A \to B$.
- 7. Let an *ordinal* be a set α such that $\bigcup \alpha \subseteq \alpha$ and α is strictly well-ordered by the \in relation. Prove that every ordinal is a set of ordinals well-ordered by the \subseteq relation.
- 8. The ordinals represent the well-order types. For a string s, let |s| denote the length of s. For strings s and t over a well-ordered alphabet, let $s \prec t$ mean that either |s| < |t| or |s| = |t| and s comes before t in lexicographic order.

- (a) Let S be the set of all strings of length m over a well-ordered alphabet of order type $n < \omega$. What ordinal has the same order type as (S, \prec) ?
- (b) Let S be the set of all strings of length m over a well-ordered alphabet of order type ω . What ordinal has the same order type as (S, \prec) ?
- (c) Let S be the set of all strings over a well-ordered alphabet of order type $n < \omega$. What ordinal has the same order type as (S, \prec) ?
- (d) Let S be the set of all strings over a well-ordered alphabet of order type ω . What ordinal has the same order type as (S, \prec) ?
- 9. Let $f : A \to B$ and $g : B \to C$ be total, and let $h = g \circ f : A \to C$ be the composition of g and f.
 - (a) Prove that, if f and g are injective, then h is injective, but the converse is false.
 - (b) Prove that, if f and g are surjective, then h is surjective, but the converse is false.
- 10. Show how a relation $R \subseteq A \times B$ can be transformed into an "equivalent" total function $f_R : A \to \mathcal{P}(B)$, where $\mathcal{P}(B)$ is the power set of B. (A function like f_R is sometimes called a *many-valued function*.)
- 11. (a) Suppose $R \subseteq A^2$ is an equivalence relation. Let the *equivalence* class of $a \in A$ be the set $\{b \mid aRb\}$. Show that the set of equivalence classes is a partition of A.
 - (b) Suppose P is a partition of A. Let $R \subseteq A^2$ be the relation such that aRb iff, for some $C \in P$, $a, b \in C$. Show that R is an equivalence relation.
- 12. Let $A = \{a, b, c\}$.
 - (a) List all the equivalence relations on A.
 - (b) List all the (nonstrict) preorders on A that are not nonstrict partial orders.
 - (c) List all the nonstrict partial orders on A that are not nonstrict linear orders.
 - (d) List all the nonstrict linear orders on A.

- 13. Give an example of a relation that is symmetric and transitive but not reflexive.
- 14. (a) What properties define a *nonstrict* linear order?(b) What properties define a *strict* linear order?
- 15. Suppose $P = (S, \leq)$ is a preorder. Define a nontrivial equivalence relation R on S such that the *quotient structure* P/R is a partial order.
- 16. Define the *transitive closure* of a binary relation. Prove that the transitive closure of a union of equivalence relations is an equivalence relation.
- 17. Define what a *Goodstein sequence* is. Using ordinals show that every Goodstein sequences converges to 0! (See Reuben L. Goodstein, "On the restricted ordinal theorem", J. Symbolic Logic 9:33-41, 1944. L. Kirby and J. Paris showed in 1982 the remarkable result that the Goodstein theorem cannot be proven in Peano arithmetic.)
- 18. Let M = (D, 0, +) be an arbitrary monoid. For $m, n \in \mathbb{Z}$ and a total function $f : \mathbb{Z} \to D$, define

$$\sum_{i=m}^{n} f(i) = \begin{cases} f(m) + f(m+1) + \dots + f(n) & \text{if } m \le n \\ 0 & \text{if } m > n \end{cases}$$

Is the following statement true in M? For all $m, n \in \mathbb{Z}$ and total functions $f, g : \mathbb{Z} \to D$,

$$\sum_{i=m}^{n} (f(i) + g(i)) = \sum_{i=m}^{n} f(i) + \sum_{i=m}^{n} g(i).$$

If so, prove it. If not, find a condition that characterizes the set of monoids in which the statement is true, and then prove the statement assuming the condition.

- 19. Turing machines.
 - (a) Construct a Turing machine that computes the function $f : \mathbf{N} \to \mathbf{N}$ such that f(x) = 2 * x.
 - (b) Show how to construct a universal Turing machine.

- 20. Unlimited register machines (URMs).
 - (a) Define what a URM is.
 - (b) Construct a URM that computes the function $f : \mathbf{N} \to \mathbf{N}$ such that f(x) = 2 * x.
 - (c) Show how to construct a universal URM.
- 21. Regular expressions.
 - (a) Define the notion of a *regular expression*.
 - (b) Find out how regular expressions are used by the Unix grep command.
 - (c) Review the proof that a language can be represented by a regular expression iff it can be represented by a finite automaton.
 - (d) Prove the algebraic laws of regular expressions given in Exercise 3.4.1 of J. Hopcraft, R. Motwani, and J. Ullman, *Introduction to Automata Theory, Languages, and Computation*, Second Edition, Addison Wesley, 2001.
- 22. Show how the Sheffer stroke | (a.k.a. NAND) can be used to define the following propositional connectives: $\neg, \Rightarrow, \land, \lor$, and \Leftrightarrow .
- 23. Use truth tables to verify that the following propositional formulas are tautologies.:
 - (a) $(P \land (P \Rightarrow Q)) \Rightarrow Q$ (Modus Ponens)
 - (b) $(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$ (Law of Contraposition).
 - (c) $P \lor \neg P$ (Law of Excluded Middle)
 - (d) $\neg \neg P \Rightarrow P$ (Law of Double Negation).
 - (e) $\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$ (De Morgan Law)
 - (f) $\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$ (De Morgan Law)
- 24. Prove each of the tautologies listed in Exercise 23 in a sound and complete Gentzen system for propositional logic.
- 25. Prove each of the tautologies listed in Exercise 23 in a sound and complete natural deduction system for propositional logic.

- 26. Prove each of the tautologies listed in Exercise 23 in a sound and complete semantic tableau system for propositional logic.
- 27. Define what it means for a formula of propositional logic to be in disjunctive normal form and in conjunctive normal form. Given a language L of propositional logic, prove that, for every formula φ of L, there is a formula ψ_1 of L in disjunctive normal form and a formula ψ_2 of L in conjunctive normal form such that $\varphi \Leftrightarrow \psi_1$ and $\varphi \Leftrightarrow \psi_2$ are tautologies.
- 28. Define what it means for a formula of first-order logic to be in *prenex* normal form. Given a language L of first-order logic, prove that, for every formula φ of L, there is a formula ψ of L in prenex normal form such that $\varphi \Leftrightarrow \psi$ is valid.
- 29. Find a set S of real numbers such that the order type of (S, \leq) is $\omega + 1$.
- 30. State and prove the compactness theorem for first-order logic assuming the completeness theorem for first-order logic. Use the compactness theorem to prove the following:
 - (a) Every first-order theory that has arbitrarily large finite models, has an infinite model.
 - (b) There exists a *nonstandard model* of first-order Peano arithmetic.
 - (c) There exists an extension of the standard first-order model of real arithmetic that contains infinitesimals. (A *(positive) infinitesimal* is a number ϵ such that, for all $r \in \mathbf{R}$, if 0 < r, then $0 < \epsilon < r$).
- 31. Formalize the following theories in first-order logic:
 - (a) The theory of partial orders (D, \leq) where $\leq \subseteq D \times D$.
 - (b) The theory of linear orders (D, \leq) where $\leq \subseteq D \times D$.
 - (c) The theory of dense linear orders (D, \leq) where $\leq \subseteq D \times D$.
 - (d) The theory of lattices (D, \leq, \cup, \cap) where $\leq \subseteq D \times D, \cup : D \times D \rightarrow D$, and $\cap : D \times D \rightarrow D$.
 - (e) The theory of boolean algebras (D, +, *, -, 0, 1) where $+ : D \times D \to D, * : D \times D \to D, : D \to D, 0 \in D$, and $1 \in D$.
 - (f) The theory of monoids (D, +, 0) where $+ : D \times D \to D$ and $0 \in D$.

- (g) The theory of groups (D, +, -, 0) where $+: D \times D \to D, -: D \to D$, and $0 \in D$.
- (h) The theory of rings (D, +, -, 0, *) where $+ : D \times D \to D, : D \to D, 0 \in D$, and $* : D \times D \to D$.
- (i) The theory of fields (D, +, -, 0, *, -1, 1) where $+ : D \times D \to D$, $-: D \to D, 0 \in D, *: D \times D \to D, -1: D \to D$, and $1 \in D$.
- (j) The theory of graphs (N, E) where $E \subseteq N \times N$.
- (k) The theory of bipartite graphs (N, B, R, E) where $B \subseteq N, R \subseteq N$, and $E \subseteq N \times N$.
- 32. Formalize the following theories in simple type theory:
 - (a) The theory of well orders (D, \leq) where $\leq \subseteq D \times D$.
 - (b) The theory of a complete ordered field (D, +, ⁻, 0, *, ⁻¹, 1) where + : D × D → D, ⁻ : D → D, 0 ∈ D, * : D × D → D, ⁻¹ : D → D, and 1 ∈ D. This is the theory of the real numbers. It is *categorical*, i.e., it has one model (up to isomorphism).
- 33. Let BESTT⁻ be the BESTT logic without type variables.
 - (a) Write down the traditional semantics for BESTT⁻.
 - (b) Write down the partial semantics for BESTT⁻.
- 34. Define the following theories of stacks in BESTT.
 - (a) T_1 is a theory of abstract stacks of integers.
 - (b) T_2 is a theory of abstract stacks of abstract elements.
 - (c) T_3 is a theory of stacks of abstract elements represented as lists.
- 35. Let T be a formalization in BESTT with the partial semantics of the theory of a complete ordered field.
 - (a) Define a predicate constant in T that formalizes the notion of a continuous function.
 - (b) Define a function constant in T that formalizes the mapping from an infinite sequence of real numbers to its limit. (The mapping is undefined if the sequence has no limit.)
 - (c) Define the \sum and \prod operators in T.

- 36. Show that the exponential function on \mathbf{N} is primitive recursive.
- 37. Give an example of a computable total function on **N** that is not primitive recursive.
- 38. Show how Hilbert's ϵ operator can be used to define the quantifiers \forall and \exists .
- 39. Define the notion of an isomorphism from one model of STT to another.
- 40. Well-founded relations.
 - (a) Show that a well-founded relation has no infinite descending sequences.
 - (b) Give a natural example of a well-founded relation that is not a partial order.
- 41. Let $f : \mathbf{N} \to \mathbf{N}$ generate the Fibonacci sequence.
 - (a) Show that f is a primitive recursive function.
 - (b) Define f by well-founded recursion.
 - (c) Define f by recursion via a monotone functional.
- 42. Construct a monotone functional $F : \alpha \to \alpha$ such that the least fixed point of F is $F^{\gamma}(\triangle_{\alpha})$ where $\omega < \gamma$ and \triangle_{α} is the empty function of type α
- 43. Define the set of terms and the set of formulas of PFOL as two sets of strings by mutual recursion.
- 44. Let a *tree* be defined by:
 - Every real number is a tree.
 - If s and t are trees, then the pair (s, t) is a tree.
 - (a) Formulate a theory of trees in BESTT similar to Peano arithmetic.
 - (b) Define the "mirror" of a tree by well-founded recursion and prove by induction that the mirror operation is idempotent.