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1. What did A. Fraenkel contribute to ZF set theory?

2. Describe one of the set-theoretic paradoxes other than Russell’s Para-
dox.

3. What is the cardinality of the function space N→ N, where N denotes
the set of natural numbers?

4. (a) Let Tn be a full binary tree of height n ≥ 1. What is the cardi-
nality of the set of nodes in Tn? What is the cardinality of the
set of paths in Tn?

(b) Let T∞ be a full binary tree of infinite height. What is the cardi-
nality of the set of nodes in T∞? What is the cardinality of the
set of paths in T∞?

5. State and prove the de Morgan Laws for sets.

6. Prove the Schröder-Bernstein Theorem that says, if f : A → B and
g : B → A are total injective functions, then there exists a total
bijective function h : A→ B.

7. Let an ordinal be a set α such that
⋃
α ⊆ α and α is strictly well-

ordered by the ∈ relation. Prove that every ordinal is a set of ordinals
well-ordered by the ⊆ relation.

8. The ordinals represent the well-order types. For a string s, let |s|
denote the length of s. For strings s and t over a well-ordered alphabet,
let s ≺ t mean that either |s| < |t| or |s| = |t| and s comes before t in
lexicographic order.
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(a) Let S be the set of all strings of length m over a well-ordered
alphabet of order type n < ω. What ordinal has the same order
type as (S,≺)?

(b) Let S be the set of all strings of length m over a well-ordered
alphabet of order type ω. What ordinal has the same order type
as (S,≺)?

(c) Let S be the set of all strings over a well-ordered alphabet of order
type n < ω. What ordinal has the same order type as (S,≺)?

(d) Let S be the set of all strings over a well-ordered alphabet of
order type ω. What ordinal has the same order type as (S,≺)?

9. Let f : A→ B and g : B → C be total, and let h = g ◦ f : A→ C be
the composition of g and f .

(a) Prove that, if f and g are injective, then h is injective, but the
converse is false.

(b) Prove that, if f and g are surjective, then h is surjective, but the
converse is false.

10. Show how a relation R ⊆ A × B can be transformed into an “equiv-
alent” total function fR : A → P(B), where P(B) is the power set of
B. (A function like fR is sometimes called a many-valued function.)

11. (a) Suppose R ⊆ A2 is an equivalence relation. Let the equivalence
class of a ∈ A be the set {b | aRb}. Show that the set of
equivalence classes is a partition of A.

(b) Suppose P is a partition of A. Let R ⊆ A2 be the relation such
that aRb iff, for some C ∈ P , a, b ∈ C. Show that R is an
equivalence relation.

12. Let A = {a, b, c}.

(a) List all the equivalence relations on A.

(b) List all the (nonstrict) preorders on A that are not nonstrict
partial orders.

(c) List all the nonstrict partial orders on A that are not nonstrict
linear orders.

(d) List all the nonstrict linear orders on A.
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13. Give an example of a relation that is symmetric and transitive but not
reflexive.

14. (a) What properties define a nonstrict linear order?

(b) What properties define a strict linear order?

15. Suppose P = (S,≤) is a preorder. Define a nontrivial equivalence
relation R on S such that the quotient structure P/R is a partial
order.

16. Define the transitive closure of a binary relation. Prove that the tran-
sitive closure of a union of equivalence relations is an equivalence re-
lation.

17. Define what a Goodstein sequence is. Using ordinals show that every
Goodstein sequences converges to 0! (See Reuben L. Goodstein, “On
the restricted ordinal theorem”, J. Symbolic Logic 9:33-41, 1944. L.
Kirby and J. Paris showed in 1982 the remarkable result that the
Goodstein theorem cannot be proven in Peano arithmetic.)

18. Let M = (D, 0,+) be an arbitrary monoid. For m,n ∈ Z and a total
function f : Z→ D, define

n∑
i=m

f(i) =

{
f(m) + f(m+ 1) + · · ·+ f(n) if m ≤ n
0 if m > n

Is the following statement true in M? For all m,n ∈ Z and total
functions f, g : Z→ D,

n∑
i=m

(f(i) + g(i)) =
n∑

i=m

f(i) +
n∑

i=m

g(i).

If so, prove it. If not, find a condition that characterizes the set of
monoids in which the statement is true, and then prove the statement
assuming the condition.

19. Turing machines.

(a) Construct a Turing machine that computes the function f : N→
N such that f(x) = 2 ∗ x.

(b) Show how to construct a universal Turing machine.
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20. Unlimited register machines (URMs).

(a) Define what a URM is.

(b) Construct a URM that computes the function f : N → N such
that f(x) = 2 ∗ x.

(c) Show how to construct a universal URM.

21. Regular expressions.

(a) Define the notion of a regular expression.

(b) Find out how regular expressions are used by the Unix grep com-
mand.

(c) Review the proof that a language can be represented by a regular
expression iff it can be represented by a finite automaton.

(d) Prove the algebraic laws of regular expressions given in Exercise
3.4.1 of J. Hopcraft, R. Motwani, and J. Ullman, Introduction to
Automata Theory, Languages, and Computation, Second Edition,
Addison Wesley, 2001.

22. Show how the Sheffer stroke | (a.k.a. NAND) can be used to define
the following propositional connectives: ¬, ⇒, ∧, ∨, and ⇔.

23. Use truth tables to verify that the following propositional formulas are
tautologies.:

(a) (P ∧ (P ⇒ Q))⇒ Q (Modus Ponens)

(b) (P ⇒ Q)⇔ (¬Q⇒ ¬P ) (Law of Contraposition).

(c) P ∨ ¬P (Law of Excluded Middle)

(d) ¬¬P ⇒ P (Law of Double Negation).

(e) ¬(P ∧Q)⇔ (¬P ∨ ¬Q) (De Morgan Law)

(f) ¬(P ∨Q)⇔ (¬P ∧ ¬Q) (De Morgan Law)

24. Prove each of the tautologies listed in Exercise 23 in a sound and
complete Gentzen system for propositional logic.

25. Prove each of the tautologies listed in Exercise 23 in a sound and
complete natural deduction system for propositional logic.
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26. Prove each of the tautologies listed in Exercise 23 in a sound and
complete semantic tableau system for propositional logic.

27. Define what it means for a formula of propositional logic to be in
disjunctive normal form and in conjunctive normal form. Given a
language L of propositional logic, prove that, for every formula ϕ of
L, there is a formula ψ1 of L in disjunctive normal form and a formula
ψ2 of L in conjunctive normal form such that ϕ⇔ ψ1 and ϕ⇔ ψ2 are
tautologies.

28. Define what it means for a formula of first-order logic to be in prenex
normal form. Given a language L of first-order logic, prove that, for
every formula ϕ of L, there is a formula ψ of L in prenex normal form
such that ϕ⇔ ψ is valid.

29. Find a set S of real numbers such that the order type of (S,≤) is ω+1.

30. State and prove the compactness theorem for first-order logic assuming
the completeness theorem for first-order logic. Use the compactness
theorem to prove the following:

(a) Every first-order theory that has arbitrarily large finite models,
has an infinite model.

(b) There exists a nonstandard model of first-order Peano arithmetic.

(c) There exists an extension of the standard first-order model of real
arithmetic that contains infinitesimals. (A (positive) infinitesimal
is a number ε such that, for all r ∈ R, if 0 < r, then 0 < ε < r).

31. Formalize the following theories in first-order logic:

(a) The theory of partial orders (D,≤) where ≤ ⊆ D ×D.

(b) The theory of linear orders (D,≤) where ≤ ⊆ D ×D.

(c) The theory of dense linear orders (D,≤) where ≤ ⊆ D ×D.

(d) The theory of lattices (D,≤,∪,∩) where ≤ ⊆ D×D, ∪ : D×D →
D, and ∩ : D ×D → D.

(e) The theory of boolean algebras (D,+, ∗,−, 0, 1) where + : D ×
D → D, ∗ : D ×D → D, − : D → D, 0 ∈ D, and 1 ∈ D.

(f) The theory of monoids (D,+, 0) where + : D × D → D and
0 ∈ D.
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(g) The theory of groups (D,+,−, 0) where + : D×D → D, − : D →
D, and 0 ∈ D.

(h) The theory of rings (D,+,−, 0, ∗) where + : D × D → D, − :
D → D, 0 ∈ D, and ∗ : D ×D → D.

(i) The theory of fields (D,+,−, 0, ∗,−1, 1) where + : D ×D → D,
− : D → D, 0 ∈ D, ∗ : D ×D → D, −1 : D → D, and 1 ∈ D.

(j) The theory of graphs (N,E) where E ⊆ N ×N .

(k) The theory of bipartite graphs (N,B,R,E) where B ⊆ N , R ⊆
N , and E ⊆ N ×N .

32. Formalize the following theories in simple type theory:

(a) The theory of well orders (D,≤) where ≤ ⊆ D ×D.

(b) The theory of a complete ordered field (D,+,−, 0, ∗,−1, 1) where
+ : D × D → D, − : D → D, 0 ∈ D, ∗ : D × D → D, −1 :
D → D, and 1 ∈ D. This is the theory of the real numbers. It is
categorical, i.e., it has one model (up to isomorphism).

33. Let BESTT− be the BESTT logic without type variables.

(a) Write down the traditional semantics for BESTT−.

(b) Write down the partial semantics for BESTT−.

34. Define the following theories of stacks in BESTT.

(a) T1 is a theory of abstract stacks of integers.

(b) T2 is a theory of abstract stacks of abstract elements.

(c) T3 is a theory of stacks of abstract elements represented as lists.

35. Let T be a formalization in BESTT with the partial semantics of the
theory of a complete ordered field.

(a) Define a predicate constant in T that formalizes the notion of a
continuous function.

(b) Define a function constant in T that formalizes the mapping from
an infinite sequence of real numbers to its limit. (The mapping
is undefined if the sequence has no limit.)

(c) Define the
∑

and
∏

operators in T .

6



36. Show that the exponential function on N is primitive recursive.

37. Give an example of a computable total function on N that is not
primitive recursive.

38. Show how Hilbert’s ε operator can be used to define the quantifiers ∀
and ∃.

39. Define the notion of an isomorphism from one model of STT to an-
other.

40. Well-founded relations.

(a) Show that a well-founded relation has no infinite descending se-
quences.

(b) Give a natural example of a well-founded relation that is not a
partial order.

41. Let f : N→ N generate the Fibonacci sequence.

(a) Show that f is a primitive recursive function.

(b) Define f by well-founded recursion.

(c) Define f by recursion via a monotone functional.

42. Construct a monotone functional F : α → α such that the least fixed
point of F is F γ(4α) where ω < γ and 4α is the empty function of
type α

43. Define the set of terms and the set of formulas of PFOL as two sets of
strings by mutual recursion.

44. Let a tree be defined by:

• Every real number is a tree.

• If s and t are trees, then the pair (s, t) is a tree.

(a) Formulate a theory of trees in BESTT similar to Peano arith-
metic.

(b) Define the “mirror” of a tree by well-founded recursion and prove
by induction that the mirror operation is idempotent.
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