

CAS 701 Fall 2002

02 Mathematical Models

Instructor: W. M. Farmer

Revised: 15 September 2002

Kinds of Mathematical Models

- There are many kinds of mathematical models
- The major categories are:
 1. Mathematical models constructed from basic mathematical objects (such as sets, functions, and relations)
 2. Mathematical structures (collections of objects related in certain ways)
 3. Axiomatic theories (which axiomatically specify a set of mathematical structures)
 4. Abstract machines for performing computations

Sets

- A **set** is a collection of objects with a **membership** relation (usually represented by \in)
- Almost any mathematical concept can be expressed in terms of set and membership
- There are various paradoxes that involve sets that are “too big”
 - Example: **Russell's Paradox** involving the set of all sets that do not contain themselves
- **Zermelo-Fraenkel (ZF) set theory** is a first-order formalization of set theory that is intended to avoid the set-theoretic paradoxes
 - It is widely used as a lingua franca for mathematics

Set Concepts

- Basic properties: membership, subset, cardinality
- Basic operations:
 - union, intersection, complement, difference, symmetric-difference
 - cartesian product (product), disjoint union (sum)
 - power set
- Special sets: the emptyset, universal sets, tuples, functions, relations, ordinals, cardinals

Functions

- There are two definitions of a function:
 1. A **function** is a rule $f : I \rightarrow O$ that associates members of I (inputs) with members of O (outputs)
 - Every input is associated with at most one output
 - Some inputs may not be associated with an output

Example: $f : \mathbf{Z} \rightarrow \mathbf{Q}$ where $x \mapsto 1/x$
 2. A **function** is a set $F \subset I \times O$ such that if $(x, y), (x, y') \in F$, then $y = y'$
- Each function f has a **domain** $D \subseteq I$ and a **range** $R \subseteq O$
- A set can be represented as a special kind of function (e.g., as a **unary predicate**, a **characteristic function**, or an **indicator**)

Function Concepts

- Basic properties:
 - partial, total
 - arity ($0, 1, n \geq 2$, multiary)
 - injective, surjective, bijective
 - image, reverse image
- Basic operations: composition, restriction, inverse
- Special functions: the empty function, identity functions, choice functions

Relations

- An n -ary **relation** is a set $R \subseteq A_1 \times \cdots \times A_n$ ($n \geq 1$)
 - Any set can be considered as a unary relation
 - Any nonunary relation can be considered as a binary relation
- Functions are considered as special relations
 - An n -ary function $f : A_1 \times \cdots \times A_n \rightarrow B$ is identified with the corresponding $(n + 1)$ -ary relation
$$R_f \subseteq A_1 \times \cdots \times A_n \times B$$
- An n -ary relation can be represented by an n -ary predicate

Relation Concepts

- Basic relation properties:
 - reflexive, symmetric, transitive
- Basic relation operations:
 - domain, range
 - composition, inverse
- Special relations: the empty relation, universal relations, equivalence relations

Example: Program Specifications

Various kinds of functions and relations can be used to specify computer programs:

- **Input/output specification**
 - A function $f : I \rightarrow O$ that maps inputs to outputs
 - A relation $R \subseteq I \times O$ that relates inputs and outputs
- **Before/after specification**
 - A function $f : I \times S \rightarrow O \times S$ that maps inputs and before-states to outputs and after-states
 - A relation $R \subseteq I \times S \times O \times S$ that relates inputs, before-states, outputs, and after-states
- **Trace specification**
 - A function $f : I \times S^* \rightarrow O \times S^*$ that maps inputs and before-traces to outputs and after-traces
 - A relation $R \subseteq I \times S^* \times O \times S^*$ that relates inputs, before-traces, outputs, and after-traces

Mathematical Structures

- A **mathematical structure** consists of:
 1. A set of elements called the **domain**
 2. A set of distinguished elements, functions, and relations called the **signature** that impose a structure on the set of elements
- The signature usually determines a **language** for describing and making assertions about the elements of the domain

Examples of Mathematical Structures

- Orders (e.g., pre, partial, linear, well)
- Graphs
- Lattices and boolean algebras
- Algebraic structures (e.g, monoids, groups, rings, fields, modules, vector spaces)
- Number systems (e.g, integer, rational, real, complex, hyperreal, ordinal, cardinal, surreal)
- Data structures used in Computer Science (e.g, arrays, stacks, queues)

Axiomatic Theories

- **Axiomatic theory** = formal language + set of axioms
- **Language**: vocabulary for describing and making assertions about objects and their properties
- **Axioms**: assumptions about the objects and properties
 - Specify a set of mathematical structures (called the **models** of the theory)
 - Basis for proving theorems
- Benefits:
 - **Conceptual clarity**: inessential details are omitted
 - **Generality**: theorems hold in all models

Abstract Machines

- An **abstract machine** or **automaton** is an abstract device for performing computations
- A **universal machine** is a machine that can compute any computable function; examples:
 - Turing machine
 - Unlimited register machine
- A **state machine** is a machine that computes in a stepwise fashion in which each step includes receiving input, producing output, and changing state; examples:
 - Finite automaton
 - Pushdown automaton
 - Finite state machine

Turing Machines (Alan Turing, 1936)

A (**deterministic**) **Turing machine** M consists of the following components:

1. A two-way infinite **tape** composed of cells
2. A **tape head** that can read a cell and then (a) write a symbol in it, (b) move left, or (c) move right
3. A **finite state control mechanism**
4. Fixed finite set $\{s_1, \dots, s_m\}$ of **tape symbols**
5. Fixed finite set $\{q_1, \dots, q_n\}$ of **states**
6. A **transition relation** consisting of a finite set T of quadruples of the form (q_i, s_j, s_k, q_l) , (q_i, s_j, L, q_l) , or (q_i, s_j, R, q_l) such that (a) $1 \leq i, l \leq n$, (b) $0 \leq j, k \leq m$, and (c) for all (q_i, s_j) , there is at most one $(q_i, s_j, \alpha, \beta) \in T$

Finite State Machines

A **finite state machine** M consists of the following components:

1. A fixed finite set S of **states** including an **initial state**
2. A fixed (possibly infinite) set I of **inputs**
3. A fixed (possibly infinite) set O of **outputs**
4. A **next state** relation $\text{ns} \subseteq S \times I \times S$
5. An **output** relation $\text{out} \subseteq S \times I \times O$

M is **deterministic** if the relations are functions, i.e., $\text{ns} : S \times I \rightarrow S$ and $\text{out} : S \times I \rightarrow O$