CAS 701 Fall 2002

04 Simple Type Theory

Instructor: W. M. Farmer

Revised: 11 November 2002

What is Higher-Order Logic?

e Higher-order functions (or predicates) can be represented
by terms

— Note: A function f: A — B is higher-order if A or B
contains functions

e Quantified variables can range over functions

e Types or sorts are used to:

— Organize the functions of the logic
— Control the formation of expressions
— Classify expressions by value

Type Theory

e A higher-order logic can be viewed as a theory of types

e Russell introduced a logic called the Theory of Types (TT)
in 1908 to serve as a foundation for mathematics

— Included a hierarchy of types to avoid set-theoretic
paradoxes like Russell’'s Paradox

— Employed as the logic of Whitehead and Russell’s
Principia Mathematica

— Not used today due to its high complexity

e Carnap, Chwistek, Ramsey and others suggested a

simplified version of TT called Simple Type Theory (STT)
in the 1920s

— A formulation of STT with lambda-notation was
introduced by Church in 1940

Intuitionistic Type Theory

e Several intuitionistic or constructive type theories have
been developed

e Examples:

— Martin-Lof’'s Intuitionistic Type Theory (1980)
— Coquand and Huet's Calculus of Constructions (1984)

e Many intuitionistic type theories exploit the Curry-Howard
Formulas-as-Types Isomorphism

— Formulas serve as types or specifications
— Terms serve as proofs or programs

Syntax of STT: Types

o A type of STT is defined by the following rules:

T1 (Type of individuals)
type|.]

T2 (Type of truth values)
type([x]
type type

T3 P lo], typels] (Function type)

type[(a — §)]

e Let 7 denote the set of types of STT

Syntax of STT: Symbols

e [he logical symbols are present in every STT language:
— Propositional connectives: -, =
— Function application and abstraction: @ (hidden), A
— Equality: =

e T he nonlogical symbols characterize an STT language

e A language of STT is a tuple L = (V,C,T) where:

— YV is an infinite set of symbols called variables
— C is a set of symbols called constants

— V and C are disjoint

— 7:.:C — 7 is a total function

Syntax of ST T: Expressions

e An expression e of type o of an STT language
L= (V,C, 1) is defined by the following rules:

x €V, typela]
exprp[(z : a),q]

El (Variable)

E2 ceC (Constant)

expry[c, 7(c)]

expryla,a], expr[f, (a — B)]

E3 exprr[f(a), A

(Application)

T & V; type[a]v eXprL[b7 /6]

E4 expr;[(Az:a.b),a — 3]

(Abstraction)

expry, [617 Oé], expry, [627 O‘]

ES5
exprr[(e; = e2), *]

(Equality)

Semantics of ST T: Models

e A model of a language L = (V,C,7) of STT is a pair
M = (D, I) where:

— D={Dqy:aeT}

— D, is nonempty

— D= {T,F}

— D(,—p) Is the set of functions from D, to Dg

— I maps each c € C to an element of D_

e A variable assignment into M is a function that maps
each expression (x : «) with £ € V to an element of D,

e Given a variable assignment A into M, (z : o) with z € V,
and d € Dg, let A[(x : a) — d] be the variable assignment
A’ into M such A'((z : a)) = d and A'(v) = A(v) for all
v#= (2)

Semantics of ST T: Valuation

e Let M = (D,I) be a model for a language L = (V,C, 1)
of STT

e [he valuation function of STT is the binary function
VM that satisfies the following conditions for all variable
assignments A into M and all expressions e of L:

If eis (z : «), then V%(e) = A((z : o))
If e € C, then V{1(e) = I(e)
If e is f(a), then V¥ (e) = VM (F)(V(a))

If eis (Az : «.b) and b is of type 3, then VM (e) is
the function F': Do — Dg such that, for each d € Daq,

F(d) =V {0ayma®

N

T if VM(e1) =V (en)

5. Ifeis (eg = ep), then V{{(e) = { E otherwise

Alternate Semantics for STT

e General models semantics

— A general model for a language of STT has function
domains that are not necessarily fully inhabited

— Henkin showed that STT is complete respect to the
general models semantics

— Reference: L. Henkin, “Completeness in the theory of
types”, Journal of Symbolic Logic, 15:81-91, 1950

e Partial functions semantics

— Terms may be undefined, but formulas are always true
or false

— Two versions: standard models and generals model

— The IMPS logic is an extension of STT with a partial
functions semantics

— Reference: W. Farmer, “A partial functions version of

Church’s simple theory of types,” Journal of Symbolic
LLogic, 55:1269—1291, 1990

10

Extensions to STT

e [ypes

— Additional type constants and constructors
— Type variables
— Subtypes

e EXpressions

— Additional expression constants and constructors

— Multivariate functions

e Examples:

— HOL logic
— PVS logic
— IMPS logic
— BESTT, a Basic Extended Simple Type Theory

11

