
CAS 701 Fall 2002

04 Simple Type Theory

Instructor: W. M. Farmer

Revised: 11 November 2002

1



What is Higher-Order Logic?

• Higher-order functions (or predicates) can be represented

by terms

– Note: A function f : A → B is higher-order if A or B

contains functions

• Quantified variables can range over functions

• Types or sorts are used to:

– Organize the functions of the logic

– Control the formation of expressions

– Classify expressions by value

2



Type Theory

• A higher-order logic can be viewed as a theory of types

• Russell introduced a logic called the Theory of Types (TT)

in 1908 to serve as a foundation for mathematics

– Included a hierarchy of types to avoid set-theoretic

paradoxes like Russell’s Paradox

– Employed as the logic of Whitehead and Russell’s

Principia Mathematica

– Not used today due to its high complexity

• Carnap, Chwistek, Ramsey and others suggested a

simplified version of TT called Simple Type Theory (STT)

in the 1920s

– A formulation of STT with lambda-notation was

introduced by Church in 1940

3



Intuitionistic Type Theory

• Several intuitionistic or constructive type theories have

been developed

• Examples:

– Martin-Löf’s Intuitionistic Type Theory (1980)

– Coquand and Huet’s Calculus of Constructions (1984)

• Many intuitionistic type theories exploit the Curry-Howard

Formulas-as-Types Isomorphism

– Formulas serve as types or specifications

– Terms serve as proofs or programs

4



Syntax of STT: Types

• A type of STT is defined by the following rules:

T1
type[ι]

(Type of individuals)

T2
type[∗]

(Type of truth values)

T3
type[α], type[β]

type[(α → β)]
(Function type)

• Let T denote the set of types of STT

5



Syntax of STT: Symbols

• The logical symbols are present in every STT language:

– Propositional connectives: ¬, ⇒
– Function application and abstraction: @ (hidden), λ

– Equality: =

• The nonlogical symbols characterize an STT language

• A language of STT is a tuple L = (V, C, τ) where:

– V is an infinite set of symbols called variables

– C is a set of symbols called constants

– V and C are disjoint

– τ : C → T is a total function

6



Syntax of STT: Expressions

• An expression e of type α of an STT language
L = (V, C, τ) is defined by the following rules:

E1
x ∈ V, type[α]

exprL[(x : α), α]
(Variable)

E2
c ∈ C

exprL[c, τ(c)]
(Constant)

E3
exprL[a, α], exprL[f, (α → β)]

exprL[f(a), β]
(Application)

E4
x ∈ V, type[α], exprL[b, β]

exprL[(λ x : α . b), α → β]
(Abstraction)

E5
exprL[e1, α], exprL[e2, α]

exprL[(e1 = e2), ∗]
(Equality)

7



Semantics of STT: Models

• A model of a language L = (V, C, τ) of STT is a pair
M = (D, I) where:

– D = {Dα : α ∈ T }

– Dι is nonempty

– D∗ = {T,F}

– D(α→β) is the set of functions from Dα to Dβ

– I maps each c ∈ C to an element of Dτ(c)

• A variable assignment into M is a function that maps
each expression (x : α) with x ∈ V to an element of Dα

• Given a variable assignment A into M , (x : α) with x ∈ V,
and d ∈ Dα, let A[(x : α) 7→ d] be the variable assignment
A′ into M such A′((x : α)) = d and A′(v) = A(v) for all
v 6= (x : α)

8



Semantics of STT: Valuation

• Let M = (D, I) be a model for a language L = (V, C, τ)
of STT

• The valuation function of STT is the binary function
V M that satisfies the following conditions for all variable
assignments A into M and all expressions e of L:

1. If e is (x : α), then V M
A (e) = A((x : α))

2. If e ∈ C, then V M
A (e) = I(e)

3. If e is f(a), then V M
A (e) = V M

A (f)(V M
A (a))

4. If e is (λ x : α . b) and b is of type β, then V M
A (e) is

the function F : Dα → Dβ such that, for each d ∈ Dα,
F (d) = V M

A[(x:α) 7→d](b)

5. If e is (e1 = e2), then V M
A (e) =

{
T if V M

A (e1) = V M
A (e2)

F otherwise

9



Alternate Semantics for STT

• General models semantics

– A general model for a language of STT has function
domains that are not necessarily fully inhabited

– Henkin showed that STT is complete respect to the
general models semantics

– Reference: L. Henkin, “Completeness in the theory of
types”, Journal of Symbolic Logic, 15:81–91, 1950

• Partial functions semantics

– Terms may be undefined, but formulas are always true
or false

– Two versions: standard models and generals model

– The IMPS logic is an extension of STT with a partial
functions semantics

– Reference: W. Farmer, “A partial functions version of
Church’s simple theory of types,” Journal of Symbolic
Logic, 55:1269–1291, 1990

10



Extensions to STT

• Types

– Additional type constants and constructors

– Type variables

– Subtypes

• Expressions

– Additional expression constants and constructors

– Multivariate functions

• Examples:

– HOL logic

– PVS logic

– IMPS logic

– BESTT, a Basic Extended Simple Type Theory

11


