

CAS 701 Fall 2002

04 Simple Type Theory

Instructor: W. M. Farmer

Revised: 11 November 2002

What is Higher-Order Logic?

- Higher-order functions (or predicates) can be represented by terms
 - Note: A function $f : A \rightarrow B$ is **higher-order** if A or B contains functions
- Quantified variables can range over functions
- Types or sorts are used to:
 - Organize the functions of the logic
 - Control the formation of expressions
 - Classify expressions by value

Type Theory

- A higher-order logic can be viewed as a theory of types
- Russell introduced a logic called the **Theory of Types (TT)** in 1908 to serve as a foundation for mathematics
 - Included a hierarchy of types to avoid set-theoretic paradoxes like Russell's Paradox
 - Employed as the logic of Whitehead and Russell's **Principia Mathematica**
 - Not used today due to its high complexity
- Carnap, Chwistek, Ramsey and others suggested a simplified version of TT called **Simple Type Theory (STT)** in the 1920s
 - A formulation of STT with lambda-notation was introduced by Church in 1940

Intuitionistic Type Theory

- Several intuitionistic or constructive type theories have been developed
- Examples:
 - Martin-Löf's **Intuitionistic Type Theory** (1980)
 - Coquand and Huet's **Calculus of Constructions** (1984)
- Many intuitionistic type theories exploit the Curry-Howard Formulas-as-Types Isomorphism
 - Formulas serve as types or specifications
 - Terms serve as proofs or programs

Syntax of STT: Types

- A **type** of STT is defined by the following rules:

$$T1 \frac{}{\mathbf{type}[\iota]} \text{ (Type of individuals)}$$

$$T2 \frac{}{\mathbf{type}[*]} \text{ (Type of truth values)}$$

$$T3 \frac{\mathbf{type}[\alpha], \mathbf{type}[\beta]}{\mathbf{type}[(\alpha \rightarrow \beta)]} \text{ (Function type)}$$

- Let \mathcal{T} denote the set of types of STT

Syntax of STT: Symbols

- The **logical symbols** are present in every STT language:
 - Propositional connectives: \neg , \Rightarrow
 - Function application and abstraction: \circ (hidden), λ
 - Equality: $=$
- The **nonlogical symbols** characterize an STT language
- A **language** of STT is a tuple $L = (\mathcal{V}, \mathcal{C}, \tau)$ where:
 - \mathcal{V} is an infinite set of symbols called **variables**
 - \mathcal{C} is a set of symbols called **constants**
 - \mathcal{V} and \mathcal{C} are disjoint
 - $\tau : \mathcal{C} \rightarrow \mathcal{T}$ is a total function

Syntax of STT: Expressions

- An **expression** e of **type** α of an STT language $L = (\mathcal{V}, \mathcal{C}, \tau)$ is defined by the following rules:

$$\mathbf{E1} \quad \frac{x \in \mathcal{V}, \ \mathbf{type}[\alpha]}{\mathbf{expr}_L[(x : \alpha), \alpha]} \quad (\mathbf{Variable})$$

$$\mathbf{E2} \quad \frac{c \in \mathcal{C}}{\mathbf{expr}_L[c, \tau(c)]} \quad (\mathbf{Constant})$$

$$\mathbf{E3} \quad \frac{\mathbf{expr}_L[a, \alpha], \ \mathbf{expr}_L[f, (\alpha \rightarrow \beta)]}{\mathbf{expr}_L[f(a), \beta]} \quad (\mathbf{Application})$$

$$\mathbf{E4} \quad \frac{x \in \mathcal{V}, \ \mathbf{type}[\alpha], \ \mathbf{expr}_L[b, \beta]}{\mathbf{expr}_L[(\lambda x : \alpha . b), \alpha \rightarrow \beta]} \quad (\mathbf{Abstraction})$$

$$\mathbf{E5} \quad \frac{\mathbf{expr}_L[e_1, \alpha], \ \mathbf{expr}_L[e_2, \alpha]}{\mathbf{expr}_L[(e_1 = e_2), *]} \quad (\mathbf{Equality})$$

Semantics of STT: Models

- A **model** of a language $L = (\mathcal{V}, \mathcal{C}, \tau)$ of STT is a pair $M = (D, I)$ where:
 - $D = \{D_\alpha : \alpha \in \mathcal{T}\}$
 - D_ι is nonempty
 - $D_* = \{\top, \perp\}$
 - $D_{(\alpha \rightarrow \beta)}$ is the set of functions from D_α to D_β
 - I maps each $c \in \mathcal{C}$ to an element of $D_{\tau(c)}$
- A **variable assignment** into M is a function that maps each expression $(x : \alpha)$ with $x \in \mathcal{V}$ to an element of D_α
- Given a variable assignment A into M , $(x : \alpha)$ with $x \in \mathcal{V}$, and $d \in D_\alpha$, let $A[(x : \alpha) \mapsto d]$ be the variable assignment A' into M such $A'((x : \alpha)) = d$ and $A'(v) = A(v)$ for all $v \neq (x : \alpha)$

Semantics of STT: Valuation

- Let $M = (D, I)$ be a model for a language $L = (\mathcal{V}, \mathcal{C}, \tau)$ of STT
- The **valuation function** of STT is the binary function V^M that satisfies the following conditions for all variable assignments A into M and all expressions e of L :
 1. If e is $(x : \alpha)$, then $V_A^M(e) = A((x : \alpha))$
 2. If $e \in \mathcal{C}$, then $V_A^M(e) = I(e)$
 3. If e is $f(a)$, then $V_A^M(e) = V_A^M(f)(V_A^M(a))$
 4. If e is $(\lambda x : \alpha . b)$ and b is of type β , then $V_A^M(e)$ is the function $F : D_\alpha \rightarrow D_\beta$ such that, for each $d \in D_\alpha$, $F(d) = V_{A[(x:\alpha) \mapsto d]}^M(b)$
 5. If e is $(e_1 = e_2)$, then $V_A^M(e) = \begin{cases} \text{T} & \text{if } V_A^M(e_1) = V_A^M(e_2) \\ \text{F} & \text{otherwise} \end{cases}$

Alternate Semantics for STT

- General models semantics
 - A **general model** for a language of STT has function domains that are not necessarily fully inhabited
 - Henkin showed that STT is complete respect to the general models semantics
 - Reference: L. Henkin, “Completeness in the theory of types”, *Journal of Symbolic Logic*, 15:81–91, 1950
- Partial functions semantics
 - Terms may be undefined, but formulas are always true or false
 - Two versions: standard models and general model
 - The IMPS logic is an extension of STT with a partial functions semantics
 - Reference: W. Farmer, “A partial functions version of Church’s simple theory of types,” *Journal of Symbolic Logic*, 55:1269–1291, 1990

Extensions to STT

- Types
 - Additional type constants and constructors
 - Type variables
 - Subtypes
- Expressions
 - Additional expression constants and constructors
 - Multivariate functions
- Examples:
 - HOL logic
 - PVS logic
 - IMPS logic
 - BESTT, a Basic Extended Simple Type Theory