CAS 701 Fall 2002

05 Partial Functions and
Undefined Terms

Instructor: W. M. Farmer

Revised: 19 November 2002

What are Partial Functions?

e Each function f has:

— A domain of definition Df where it is defined
— A domain of application D}’z where it can be applied

e Examples:

—Ve:R.z2#0=z/z=1

—Vz:R. f(z) ~y1—2a?

e A function f is total if D, = D;;

e A function f is partial if Dy C D;z

T he Problem of Undefinedness

e Partial functions are ubiquitous in mathematics and
computer science

e Definite description is a powerful technique for defining
new objects and concepts

e [he use of partial functions and definite description
naturally leads to undefined terms

e Traditional logics do not directly admit undefined terms
due to the

EXistence Assumption: Terms always have a
denotation

Approaches to Undefinedness

1. Nondenoting terms are non-well-formed terms
2. Partial functions are represented as relations

3. Partial functions are considered total functions with
unspecified values

4. Partial functions are viewed as total functions with smaller
domain sorts

5. The value of an undefined term is an exceptional value
6. The value of an undefined term is a nonexistent value
7. Terms and formulas may be nondenoting

8. Terms may be nondenoting, but formulas are always
denoting

The Traditional Approach to Partial
Functions and Undefinedness

e Terms may be undefined

— Variables and constants are always defined

— Definite descriptions may be undefined:
(Iz:R.zxx=2)

— Functions may be partial and thus their applications
may be undefined: 1/0, v—-1

— An application of a function is undefined if any
argument is undefined: 0% (1/0)

e Formulas are always true or false

— Predicates are always total

— An application of a predicate is false if any argument
is undefined: 1/0=1/0

Partial First-Order Logic (PFOL)

e Admits undefined terms, partial functions, and definite
descriptions

e Semantics is based on the traditional approach to partial
functions and undefinedness

— Terms may be undefined
— Formulas always denote true or false

e PFOL is a “logic of definedness”, not a “logic of
existence”

— Undefined terms are indiscernible

e [he new machinery—partial functions and definite
descriptions—is purely a convenience and is eliminable

Earlier Logics Similar to PFOL

e R. Schock (1968)

e T. Burge (1971)

e M. Beeson (1985)

e L. Monk (1986)

e S. Feferman (1990)

e LUTINS, W. Farmer, J. Guttman, J. Thayer (1990)

e D. Parnas (1993)

Syntax of PFOL: Symbols

e T he logical symbols are present in every PFOL
language:
— Usual logical constants: =, -, =,V
— Definite description operator: 1

e [he nonlogical symbols characterize a PFOL language

e A language of PFOL is a tuple L = (V,C,F,P) where:

— YV is an infinite set of symbols called variables

— C is a set of symbols called individual constants

— JFis a set of function symbols, each with an assigned
arity > 1

— P is a set of predicate symbols, each with an
assigned arity > 1, that includes = as a 2-ary predicate
symbol

— YV, C, F, and P are pairwise disjoint

Syntax of PFOL: Terms and Formulas

1 r eV To ceC

term; [x] term; [c]

T €V, formL[go]

T3 term;[(Iz . p)]

feF (n-ary), termg[t1],...,termy[t,]
term;[f(t1,...,tn)]

p € P (n-ary), termg[t1],...,termy[iy]
formy [p(tq,...,tn)]

T4

F1

formply] 5 formgle], formy[y]

P2 form) [—o) form [(p =)]

x €V, formL[go]
form;[(Vz . ¢)]

Fa

Some Abbreviations

(s =1)

(s = 1)

(o NY)

(o V)

(p &)
(dx . @)
(tl)

(1)
(s~t)
1L

if(p,s,t)

for
for
for
for
for
for
for

for
for
for
for

= (s,1)

(s =1)

(o = =)
=P

(p=Y)N (Y =)
—|(\V/£IZ . —lgo)

Jx.x =1t

where z € YV and x does not occur in t

—(¢ 1)

(slVt])=s=t

lx . x F=x where x €V

Iz. (p=>x=35)AN(~p=>x=1)
where z € V and

x does not occur in ¢, s, ort

10

Some Simple Examples

|z| ~ if(x < 0, —z, x)

flo,y) =\ [2EL

x/y~lz.c=1yx*z)

11

Semantics of PFOL: Models

e A model for a PFOL language L is a pair M = (D,I)
where D is a nonempty domain and I is a total function
on CUF UP such that:

— If ceC, then I(c) € D.

— If f € F is n-ary, then I(f) is a partial function from
D x---x D (n times) to D.

— If p € P is n-ary, then I(p) is a total function from
Dx---xD (n times) to {T,F} (domain of truth values).
I(=) is the identity relation on D.

e A variable assignment into M is a total function from
YV to D.

12

Semantics of PFOL.: Valuation (1)

o Let M = (D, I) be a model of a language L = (V,C, F,P)
of PFOL

e [he valuation function for M is a binary function v M
such that satisfies the following conditions for all variable
assignments A and all terms and formulas of L:

1.
2.

If t €V, then V() = A(t).
If t € C, then VM (t) = I(2).

. Lett=1Ix.¢p. If there is a unique d € D such that

Vi\{de] (90) =T,

then V() = d; otherwise V{1 (¢) is undefined.

13

Semantics of PFOL.: Valuation (2)

4. Let t = f(t1,...,tn). If VM (¢1),..., V¥ (tn) are defined
and I(f) is defined at (V4 (t1),..., V4 (tn)), then

VM@) = 1(H)(VM(t1),...,VM(tn));

otherwise V1 (t) is undefined.

5. Let » = p(t1,...,tn). If VI(t1),..., VY (tn) are defined,
then

V(o) = 1) (VI (1), ..., Vi (ta));

otherwise VM (p) = F.

14

Semantics of PFOL: Valuation (3)

6. Let o = —~¢'. If VM (¢') =F, then V{1 (p) = T; otherwise
Vil(e) =F.

7. Let o = ¢/ = ¢ If VM (¢') =T and V(") = F, then
V() = F; otherwise VM (¢) =T.

8. Let p =Vz .. If V%de](SO/) — T for all d € D. then
V%(Sﬁ) = T, otherwise VAW(@) — F.

15

Elimination Theorem

Theorem For every PFOL theory T'= (L,IN), thereis a FOL
theory T* = (L*,I'*) and a translation from each formula ¢
of L to a formula ¢* of L* such that

T FEproL ¢ iff T" EroL ¢

Moreover, T* = T if L contains no function symbols and I
contains no occurrences of I, and ¢* = ¢ if ¢ contains no
function symbols and no occurrences of 1.

Proof ideas:

e n-ary function symbols are replaced by (n + 1)-ary
predicate symbols

e Definite descriptions are eliminated in the same way
Russell eliminates them in “On Denoting”

16

An Axiomatization of PFOL (1)

Axioms schemata:
L. o= (Y= ¢)

2. [p=W=0)]=[(¢=7v)= (p=10)]

3. (mp =)= (=)

4. Vz.p=1v¢)= (p=Vaz.¢) where z is not free in ¢
5. [(Va .) Atl] = @[z —t] where t is free for z in ¢

6. Ve.x==x

17

An Axiomatization of PFOL (2)

7. s~t= (o= p*) where ¢* is the result of replacing one
occurrence of s in ¢ by an occurrence of ¢, provided that
the occurrence of s is not a variable immediately after V
or I

8. x| wherex eV
9. al] whereaeC

10. (Iz.)| [Fx. o ANy . polr —y] =y =2x)]
where y does not occur in ¢

11. (Iz.¢)] = plr— (Ix . p)]
where (Ix . @) is free for x in ¢

18

An Axiomatization of PFOL (3)
12. [t1TV---Vinl]l = f(t1,...,tn) T where f € F is n-ary

13. [t1TV---Vinl] = (t1,...,tn) Where p € P is n-ary

Rules of inference:
Modus Ponens: From ¢ = v and ¢ infer ¢

Generalization: From ¢ infer Vx . ¢

19

Partial Logics

e PFOL, Partial First-Order Logic

— Version of first-order logic
— W. Farmer, J. Guttman, Studia Logica, 2000

e LUTINS

— Version of Church’s simple theory of types

— Logic of the IMPS Interactive Mathematical Proof
System

— W. Farmer, J. Symbolic Logic, 1990

e BESTT, a Basic Extended Simple Type Theory

— Extended version of Church’s simple theory of types
— W. Farmer, 2001

e STMM, a Set Theory for Mechanized Mathematics

— Version of NBG set theory
— W. Farmer, J. Automated Reasoning, 2001

20

Conclusion

e [he traditional approach to partial functions and
undefinedness can be formalized in FOL and other
traditional logics without sacrificing the underlying
intuition and semantics

e [he new machinery allows one to reason about
undefined terms, partial functions, and definite
descriptions is a natural and direct way

e IMPS demonstrates that this kind of machinery can be
effectively implemented

e [he ideas of PFOL should be:

— Incorporated into practice-oriented logics
— Taught to all engineers and scientists

21

