
CAS 701 Fall 2002

06 Recursive Definition and
Inductive Proof

Instructor: W. M. Farmer

Revised: 30 November 2002

1



What is Recursion?

• Recursion is a method of defining a structure or

operation in terms of itself

– One of the most fundamental ideas of computing

– Can make some specifications, descriptions, and

programs easier to express and prove correct

• Induction is a method of proof based on a recursively

defined structure

– The recursively defined structure and the proof method

are specified by an induction principle

• The terms “recursion” and “induction” are often used

interchangeably

2



Example: Natural Numbers

• Recursive definition:

1. 0 ∈ N

2. If n ∈ N, then S(n) ∈ N

3. The members of N are distinct (“no confusion”)

4. N is the smallest such set (“no junk”)

• Induction principle:

∀P : N → ∗ .

[P (0) ∧ (∀x : N . P (x) ⇒ P (S(x)))]

⇒
∀x : N . P (x)

3



Recursive Function Definitions

• Recursion is extremely useful for defining functions

– Can facilitate both reasoning and computation

• A faulty recursive definition may lead to inconsistencies

– Example: ∀n : N . f(n) = f(n) + 1

• There are several schemes for defining functions by

recursion

4



Recursive Definition Schemes

• Each scheme has a set of instance requirements

• A scheme is proper if every instance of the scheme

actually defines a function

• The domain of a scheme is the set of functions f such

that f is definable by some instance of the scheme

• Designers of mechanized mathematics systems prefer

schemes which:

– Are proper

– Have easily checked instance requirements

– Have a large domain of useful functions

5



The Primitive Recursive Functions (1)

• The class P of primitive recursive functions is the

smallest set of f : N × · · · × N → N closed under the

following rules:

1. Successor Function (λ x : N . x + 1) ∈ P

2. Constant Functions Each (λ x1, . . . , xn : N . m) ∈ P
where 0 ≤ m, n

3. Projection Functions Each (λ x1, . . . , xn : N . xi) ∈ P
where 1 ≤ n and 1 ≤ i ≤ n

4. Composition If g1, . . . , gm, h ∈ P, then f ∈ P where

∀x1, . . . , xn : N .
f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

5. Primitive Recursion If g, h ∈ P, then f ∈ P where

∀x2, . . . , xn : N . f(0, x2, . . . , xn) = g(x2, . . . , xn)
∀x1, . . . , xn : N .

f(x1 + 1, x2, . . . , xn) = h(x1, f(x1, x2, . . . , xn), x2, . . . , xn)

6



The Primitive Recursive Functions (2)

• Example: The factorial function f : N → N is defined by:

1. f(0) = g() = 1.

2. f(n + 1) = h(n, f(n)) where h(x, y) = y ∗ (x + 1)

• The primitive recursion scheme is proper

• P is a very large, but proper, subset of the computable

total functions on N

– P contains almost all functions on N commonly found

in mathematics

• Theorem There exists a computable total function

f : N → N such that f 6∈ P

Proof: Construct f by diagonalization

7



Well-Founded Relations

• A relation R ⊆ A×A is well-founded, if for all nonempty

B ⊆ A, there is some a ∈ B such that, for all b ∈ B, ¬bRa

– a is called the R-least element of B

• Theorem. If R ⊆ A×A is a strict linear order, then R is

well-founded iff R is a well-order.

8



Well-Founded Recursion

• A tuple (T, f, D, R) where

– T is a theory

– f : A → A

– D is a definition of the form

∀x . f(x) = E(f(a1(x)), . . . , f(ak(x)))

– R ⊆ A×A is a well-founded relation

defines f to be a total function in T by well-founded
recursion if ai(x) R x for each i with 1 ≤ i ≤ k

• Example: (P, f, D, <) where

– P is first-order Peano arithmetic

– f : N → N

– D is ∀n . f(n) = if(n = 0,1, f(n− 1) ∗ n)

– < is the usual order on N

defines the factorial function in P

9



Monotone Functionals

• A functional is an expression of type α ⇀ α where

α = α1 × · · · × αn ⇀ αn+1

• Subfunction: ∀ g, h : α . g vα h ≡
∀x1 : α1, . . . , xn : αn . g(x1, . . . , xn)↓
⇒ g(x1, . . . , xn) = h(x1, . . . , xn)

• Monotone: ∀F : α ⇀ α . monotoneα(F ) ≡
∀ g, h : α . g vα h ⇒ F (g) vα F (h)

• Fixed Point Theorem: Every monotone functional has

a least fixed point.

Proof: F γ(4α) must be a fixed point for some ordinal

γ, where 4α is the empty function of type α

10



Monotone Functional Recursion

• A recursive definition via a monotone functional is a

triple R = (T, f, F ) where:

– T = (L,Γ) is a theory (in a higher-order logic that

admits partial functions)

– f is a constant of type α which is not a member of L

– F is a functional of type α which is monotone in T

• The defining axiom of R is ϕ which says

“f is a least fixed point of F”

• The definitional extension resulting from R is the

theory (L ∪ {f},Γ ∪ {ϕ})

11



Examples

• Factorial: λ f : N ⇀ N . λ n : N . if(n = 0,1, f(n− 1) ∗ n)

• Sum: λ σ : Z×Z× (Z ⇀ R) ⇀ R .

λ m, n : Z, f : Z ⇀ R . if(m ≤ n, σ(m, n− 1, f) + f(n),0)

• Empty function: λ f : Z ⇀ Z . λ n : Z . f(n)

• Empty function: λ f : Z ⇀ Z . λ n : Z . f(n) + 1

12


