CAS 701 Fall 2002

07 Practical Application of The Axiomatic Method

Instructor: W. M. Farmer

Revised: 28 November 2002

1

What is the Axiomatic Method?

- 1. A mathematical model is expressed as a set of axioms (in a language) called an **axiomatic theory**
- 2. New concepts are introduced by making **definitions**
- 3. Assertions about the model are stated as **theorems** and proved from the axioms

Notes:

- The axiomatic method is a method of **presentation**, not a method of **discovery** (Lakatos)
- The axiomatic method can be used as a method of **organization**

History

- Euclid (325–265 BC) used the axiomatic method to present the mathematics known in his time in the **Elements**
 - The axioms were considered truths
- The development of **noneuclidean geometry** by Bolyai, Gauss, and Lobachevskii (early 1800s) showed that axioms may be considered as just assumptions
- Whitehead and Russell formalized a major portion of mathematics in the **Principia Mathematica** (1910–1913)
- Bourbaki (mid 1900s) used the axiomatic method to codify mathematics in the 30 volume Eléments de mathématique
- Several libraries of formalized mathematics have been developed since the late 1980s using interactive theorem provers: HOL, IMPS, Isabelle, Mizar, Nqthm, Nuprl, PVS

Axiomatic Theories

- **Theory** = formal language + set of axioms
- Language: vocabulary for objects and their properties
 - Has a precise semantics (with a notion of logical consequence)
 - Can be used to describe multiple situations
 - The language usually belongs to a **logic**
- Axioms: assumptions about the objects and properties
 - Specify a class of models
 - Basis for proving **theorems**

Example: Theory of Partial Order

- \bullet Language: A first-order logic language with a 2-place predicate symbol \leq
 - $-a \leq b$ is intended to mean a is less than or equal to b
- Axioms:
 - Reflexivity. $\forall x . x \leq x$
 - Transitivity. $\forall x, y, z$. $(x \leq y \land y \leq z) \supset x \leq z$
 - Antisymmetry. $\forall x, y : (x \leq y \land y \leq x) \supset x = y$
- The theory has infinitely many nonisomorphic models

Example: Peano Arithmetic

- Language: A second-order logic language with a constant symbol 0 and 1-place function symbol S
 - 0 is intended to represent the number zero
 - S is intended to represent the successor function, i.e., S(a) means a + 1
- Axioms:
 - 0 has no predecessor. $\forall x . \neg (0 = S(x))$
 - S is injective. $\forall x, y \, . \, S(x) = S(y) \supset x = y$
 - Induction principle.

 $\forall P. (P(0) \land \forall x . P(x) \supset P(S(x))) \supset \forall x . P(x)$

• Second-order Peano arithmetic is **categorical**, i.e, it has exactly one model up to isomorphism

Benefits of Axiomatic Theories

- Conceptual clarity: inessential details are omitted
- Generality: theorems hold in all models
- **Dual purpose**: a theory can be viewed as:
 - An abstract mathematical model
 - A specification of a collection of mathematical models

Theory Interpretations

- A translation Φ from T to T' is a function that maps the primitive symbols of T to expressions of T' satisfying certain syntactic conditions
- Φ determines:
 - A mapping of expressions of T to expressions of T'
 - Set of sentences called obligations
- Φ is an **interpretation** if it maps the theorems of T to theorems of T'
 - Sufficient condition: the obligations of Φ are theorems of T^\prime
- Interpretations are information conduits!

Example: Theory of Computer Networks

- Theory name: Networks
- Language: Many-sorted first-order logic language with the following sorts and function symbols:

Sorts	Function symbols
boxes	box-of-interface
wires	wire-of-interface
interfaces	address-of-interface
addresses	

- Example axioms:
 - "Every box has a unique loopback interface"
 - "The address of a loopback interface is 127.0.0.1"

Example: Theory of Bipartite Graphs

- Theory name: Bipartite Graphs
- Language: Many-sorted first-order logic language with the following sorts and function symbols:

Sorts	Operators
red-nodes	red-node-of-edge
blue-nodes	blue-node-of-edge
edges	

• No explicit axioms

Example: Bipartite Graphs to Networks

• Let $\Phi_{BG \rightarrow N}$ be the translation from Bipartite Graphs to Networks defined by:

 $\begin{array}{l} \mathsf{red-nodes} \mapsto \mathsf{boxes} \\ \mathsf{blue-nodes} \mapsto \mathsf{wires} \\ \mathsf{edges} \mapsto \mathsf{interfaces} \\ \mathsf{red-node-of-edge} \mapsto \mathsf{box-of-interface} \end{array}$

 $blue\text{-node-of-edge} \mapsto wire\text{-of-interface}$

- $\Phi_{BG \rightarrow N}$ has no obligations
- $\Phi_{BG \rightarrow N}$ is an interpretation
 - "Transitivity of red-to-red connectivity" maps to
 "transitivity of box-to-box connectivity"

Example: Symmetry Interpretation

• Let $\Phi_{BG \rightarrow BG}$ be the translation from Bipartite Graphs to Bipartite Graphs defined by:

 $red-nodes \mapsto blue-nodes$

 $blue\text{-nodes}\mapsto red\text{-nodes}$

 $edges \mapsto edges$

 $red-node-of-edge \mapsto blue-node-of-edge$

 $blue-node-of-edge \mapsto red-node-of-edge$

- $\Phi_{BG \rightarrow BG}$ has no obligations:
- $\Phi_{BG \rightarrow BG}$ is an interpretation
 - "Transitivity of red to red connectivity" maps to
 "transitivity of blue to blue connectivity"

Two Versions of the Axiomatic Method

- 1. **Big Theory**: A body of mathematics is entirely represented in one theory
 - Often a powerful, highly expressive theory like set theory is selected
 - All reasoning is performed within this single theory
- 2. Little Theories: A body of mathematics is represented as a network of theories
 - Bigger theories are composed of smaller theories
 - Theories are linked by interpretations
 - Reasoning is distributed over the network

Benefits of Little Theories

- Mathematics can be developed using the most appropriate vocabulary at the most appropriate level of abstraction
- Emphasizes reuse: if A is a theorem of T, then A may be reused in any "instance" of T
- Enables perspective switching
- Enables parallel development
- Inconsistency can be isolated: there are no interpretations of an inconsistent theory in a consistent theory, so inconsistency cannot spread from one theory to another

Formalized Mathematics

- Mathematics is a process of creating, exploring, and connecting mathematical models
- Formalized mathematics is the practical application of the axiomatic method within a formal logic
 - The mathematics process is performed with the aid of mechanized mathematics systems
 - Axiomatic theories are formally developed
 - * Theory creation
 - * Conservative theory extension
 - * Theory exploration
 - * Theory interpretation

Theory Creation

- Theories can be created in a several ways:
 - From scratch
 - By forming a union of a set of theories
 - By adding new vocabulary and axioms to a theory
 - By instantiating a parameterized theory
 - By instantiating a theory via an interpretation
- A theory may be required to contain a **kernel theory** which includes the machinery common to all theories

Conservative Theory Extension

- A conservative extension T' of T adds new machinery to T without compromising the original machinery of T
- The **obligation** of a purported conservative extension is a formula that implies that the extension is conservative
- Since T and T' are essentially the same theory, T' can be implemented by overwriting T
 - Avoids a proliferation of closely related theories
- There are two important kinds of conservative extensions that add new vocabulary to a theory:
 - Definitions
 - Profiles

Definitions

- A definition is a conservative extension that adds a new symbol s and a defining axiom A(s) to a theory T
 - In some logics, the defining axiom can have the form s = D (where s does not occur in D)
- The obligation of the definition is

 $\exists !x . A(x)$

• The symbol s can usually be eliminated from any new expression of involving s

Profiles

- A **profile** is a conservative extension that adds a set $\{s_1, \ldots, s_n\}$ of symbols and a profiling axiom $A(s_1, \ldots, s_n)$ to a theory T
- The obligation of the profile is

 $\exists x_1,\ldots,x_n \cdot A(x_1,\ldots,x_n)$

- The symbols s_1, \ldots, s_n cannot usually be eliminated from expressions involving s_1, \ldots, s_n
- Profiles can be used for introducing:
 - Underspecified objects
 - Recursively defined functions
 - Abstract datatypes

Theory Exploration

- The logical consequences of a theory are explored by:
 - Proving conjectures
 - Performing computations
- Products of theory exploration:
 - Theorems
 - Proofs
 - Counterexamples
 - Computations
- Tools of theory exploration:
 - Theorems
 - Transformers

Theorems

- Facts about a theory are recorded as theorems
- A theorem is usually installed in a theory only if it has been verified by a proof
- A theorem may sometimes be installed without a proof:
 - A theorem verified by a decision procedure
 - A theorem verified by a counterexample
 - A theorem imported via an interpretation
 - A theorem shown by a metatheorem

Transformers

• A transformer is a function that maps the expressions of a language L to the expressions of a language L'

- Usually, $L \leq L'$, $L' \leq L$, or L = L'

- A transformer can be used to represent an expression transforming operation such as an evaluator, a simplifier, a rewrite rule, a rule of inference, a decision procedure, or an interpretation of one language in another
- Sound transformers can be:
 - Generated from theorems (e.g., theorem macetes)
 - Constructed from other transformers using certain constructors (e.g., compound macetes)
 - Obtained by instantiating abstract transformers (e.g., algebraic and order processors)
 - Manually defined and verified

Interpretations

- Theory interpretations can be used to:
 - Transport theorems, definitions, and profiles
 - Instantiate theories
 - Compare the strength of theories
 - Show relative consistency of theories
 - Show theory extension conservativity
- Logic interpretations can be used to interpret a theory in one logic in a theory of another logic