Ordinal Numbers

Ramez Mousa Oct. 14, 2004 CAS 701

- Introduction
- Basic Definitions
- Ordinal Numbers
- Arithmetic of Ordinal Numbers
- Final Remarks
- References

Introduction

- A natural number can be used for 2 purposes:
 - Describe the size of a set
 - Describe the position of an element in a sequence
- In the finite world, these 2 concepts coincide[vi]
- In the infinite world, the two concepts need to be distinguished
 - Size aspect leads to Cardinal Numbers
 - Position aspect leads to Ordinal Numbers
- Thus, with respect to the finite world, ordinal numbers and cardinal numbers are the same[vi]

Basic Definitions

- Well Ordered Set: A totally ordered set (A, ≤) is well ordered if and only if every nonempty subset of A has a least element
 - Set of nonnegative integers is well ordered
 - Set of integers is not well ordered[v]
- Order Isomorphic: 2 totally ordered sets (A, ≤) and (B, ≤) are order isomorphic if and only if there is a bijection from A to B such that

• For all a_1 , $a_2 \in A$, $a_1 \leq a_2$ if and only if $f(a_1) \leq f(a_2)_{[v]}$

 Proper Class: A Class is an arbitrary collection of elements. Classes which are not sets are called proper classes_[iv]

Ordinal Numbers

- Informally, used to denote the position of an element in an ordered sequence[vi]
- Formally, it is one of the numbers in Georg Cantor's extension of the whole numbers_[vi]
- Defined as the order type of a well ordered set_[v]
- Order type of a well ordered set M, is obtained by counting elements of M in correct order
- Therefore, given a finite set, can determine its ordinal number by counting order type
- A well ordered finite set with k elements has k as order type and ordinal number

Set	Ordinal
{ }	0
{0}	1
{0, 1}	2
{0, 1, 2}	3
{0, 1, 2}	w
{0, 1, 2, 0}	$\omega + 1$
{0, 1, 2,, 0, 1, 2,}	ω+ω
$\{0, 1, 2,, 0, 1, 2,, 0\}$	$\omega + \omega + 1$

- Problem occurs when given set is infinite
 - Example: set of nonnegative integers {0, 1, 2 ...}
 - Can not determine order type of set by counting
- w is order type of set of nonnegative integers
- *w* is smallest ordinal number greater than the ordinal number of whole numbers_[v]
- Next ordinal after ω is $\omega + 1$
- Ordinal numbers them self form a well ordered set [vi]
- Ordinal numbers are: 0, 1, 2, ..., ω, ω+1, ω+2, ..., ω+ω, ω+ω+1, ... [ν]

- Given a well ordered set (A, ≤) with ordinal k, the set of all ordinals < k is order-isomorphic to A
- Define an ordinal as the set of all ordinals less that itself.
- Example, 0 as { }, 1 as {0}, 2 as {0, 1}, 3 as {0, 1, 2}, k as {0, 1, ..., k-1}_[v]
- Every well ordered set is order-isomorphic to one and only one ordinal_[V]
- Can also determine next larger ordinal k+1 with the union operation k U {k}_[v]
- No largest ordinal_[vi]
- Collection of all ordinals form a proper class_[v]

- Mathematician John von Neumann defined a set A to be an ordinal number if and only if:
 - If a and b are members of A, then either a=b, a is a member of b, b is a member of a (strictly well ordered with respect to subset relation)[v]
 - If a_1 is a member of A, then a_1 is a proper subset of $A_{[v]}$
- Example, given ordinal 2 represented as {0,1}
 - {0, 1} has 2 members: 0 and 1 represented as { } and {0} respectively
 - Well ordered since { } is a member of {0}
 - Since { } and {0} are members of ordinal 2 we have { } and {0} are proper subsets of 2

Arithmetic of Ordinal Numbers

- Adding ordinals S+T forms a new well ordered set that is order-isomorphic to ordinal S+T_[vi]
- Addition of finite ordinals similar to integers[vi]
- Addition of transfinite ordinals is a bit tricky
 - Add 3+∞, get {0, 1, 2, 0', 1', 2' ...}
 - $\hfill \ensuremath{\,\bullet\)}$ Relabeling the above set, we get ω itself
 - Now add ω+3, get {0, 1, 2, ..., 0', 1', 2'}
 - ω+3 > 3+ω, because as you pair the numbers in the first set with the numbers in the second set, you never reach the extra numbers 0, 1, 2 at the end_[iii]
 - ω +3 has a largest element, while 3+ ω does not
- Thus addition is associative but not commutative[vi]

Arithmetic of Ordinal Numbers (cont'd)

- To multiply 2 ordinals S and T:
 - Write down the well ordered set T and replace each of its elements with a different copy of S
- Multiplying ordinals S and T forms a new well ordered set that is order-isomorphic to S*T_[vi]
- Multiplying transfinite ordinals is also a bit tricky:
 - Multiply ω*2, get {0, 1, 2, ..., 0', 1', 2', ...}
 - Observe that $\omega^* 2 = \omega + \omega$
 - Now multiply, 2*ω, get {0, 1, 0', 1', 0'', 1'', ...}
 - Relabeling, we get ω . Thus $2^*\omega = \omega$
- Like addition, multiplication of ordinals is associative but not commutative[vi]

Final Remarks

- For finite sets, can determine ordinal by counting order type
- For infinite sets, impossible to determine order type, thus denote omega
- Ordinal Numbers form a well ordered set
- Can write ordinal numbers as set of all ordinals less than itself
- Addition and multiplication of ordinals form new ordinals S+T and S*T
- Addition and multiplication of ordinals are associative but not commutative^[vi]
- Ordinal numbers are not so confusing after all!!

References

- [i] Conway, J. H. and Guy, R. K. "Cantor's Ordinal Numbers." In The Book of Numbers. New York: Springer-Verlag, 1996.
- [ii] Rucker, Rudy. "Transfinite Ordinals". October 12, 2004. <http://www.anselm.edu/homepage/dbanach/infin.htm>
- [iii] Savard, John J. G. "Infinite Ordinal". October 12, 2004. http://home.ecn.ab.ca/~jsavard/math/inf01.htm>
- [iv] Schunemann, Ulf. "Sets And Numbers". October 12, 2004. <http://web.cs.mun.ca/~ulf/gloss/sets.html>
- [v] Weisstein, Eric W. "Ordinal Number". October 12, 2004. http://mathworld.wolfram.com/OrdinalNumber.html>
- [vi] Wikipedia The Free Encyclopedia. "Ordinal Number". October 12, 2004. http://en.wikipedia.org/wiki/Ordinal_number>

Thank You For Your Time!!!