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Abstract

Semantic tableau is a proof system used to prove the validity of aformula, it can also be
used to prove if aformulais alogic consequence of a set of formulas. Tableau is used in
both propositional and predicate logic. In this report, it is shown how Tableau proof
system can be used in predicate logic. It is aso shown the proof of the soundness and
completeness of this proof system.
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1. Introduction

A semantic tableau is a tree representing all the ways the conjunction of the formulas at
the root can be true. We expand the formulas based on the structure of the compound
formulas. This expansion forms a tree. If al branches in the tableau lead to a
contradiction, then there is no way the conjunction of the formulas at the root can be true.
A path of the tree represents the conjunction of the formulas along the path. Semantic
tableaux was invented by E.W. Beth and J. Hintikka (1965).

A semantic tableau is a proof system used to:

1. TestaformulaA for validity.

2. Test whether Bisalogical consequence of A;.... Ax.

3. TestAj... A for satisfiability.
Definition 1 A signed formula is an expression TX or FX, where X is an (unsigned)
formula. Under a given valuation, a signed formula TX is caled true if X is true, and

falseif X isfase. Also, asigned formula FX is caled trueif X isfalse, and falseif X is
true[1].



Definition 2 A signed tableau is a rooted dyadic tree where each node carries a signed
formula[2].

If T is asigned tableau, an immediate extension of 7t is a larger tableau 1" obtained by
applying atableau rule to afinite path of t.

Definition 3 A path of atableau is said to be closed if it contains a conjugate pair of
formulas, i.e., a pair such as TA, FA. A path of atableau is said to be open if it is not
closed. A tableau is said to be closed if each of its pathsis closed[2].

Thetableau method:
We will see how tableau can be used to prove each of the mentioned formulae

1. To test aformula A for validity, form a signed tableau starting with FA. If the
tableau closes off then Aislogically valid.

2. To test whether B is a logical consequence of A; .... Ay form a signed tableau
starting with TA; . .. TAy, FB, If the tableau closes off then B is indeed alogical
consequence of A; ... Ak

3. Totest A;.... A« for satisfiability, form a signed tableau starting with TA. . .TA,
If the tableau closes off then A; ... A¢ is not satisfiable. If the tableau does not
close off then Ay ... A« is satisfiable, and from any open path we can read off an
assignment satisfying A; ... A

There are ten rules used to construct the signed tableau in the propositional logic as
shown in the following figure[ 3].

Rules used in Propositional Logic
T(AAB) T (AvB) T (A => B) T (A <=> B) T_A
FA
TA TA TB FA TB TA FB
TB TB FB
F (A AB) F(AvB) F(A=>B) F(A/<=\>B) F —A
/\ ‘ ‘ TA
FA FB TA TA TA FB
TB FB FB TB




2. Predicate Logic

Tableau proof is used also in predicate logic by adding rules to cope with the universal
and existential quantifiers.

Definition 4 Fix acountably infiniteset V = {al,; a2; ..... ; an;......}. The elements of V
will be called parameters. If L isalanguage, L-V -sentences will be called sentences with
parameterg2].

Definition 5 A signed tableau is a rooted dyadic tree where each node carries a signed
L-V -sentence. The tableau rules for predicate logic are the same as those for
propositional logic, with additional ruleg2].

The rules used in predicate logic are shown in the following figure] 3]

Rules used in Predicate Logic

T VX A(X) F Ix A(X)

TA(t) FA(t)

For any te'mtinL

T Ix A(X) F VX A(X)

T A(c) FA(c)

For anew constant ¢




The following example shows how tableau proof system is used in proving

F(@x (PX) v Q(X)) < (ExP(X)) v Ix Q(x))
/\

T Ix (P(X) v Q(X) F 3Ix (P(X) v Q(x))

F (@x P(x)) v Ix Q(X)) T (3x P(X)) v Ix Q(X)

F 3x (P(X)) — T~

F 3x (Q(x)) T 3x (P(x)) T 3x (Q(x))

T (P(a) v Q(a)) TP(p) T Q(c)
N F(P(p) v Q(b)  F(P(c) v Q(c))

TP@) T Q(a) F P(p) F P(c)

FP(@ FQ(a) F Q(b) FQ(c)

In this example all the branches are closed. Therefore, the original formula is valid

3. Decidability

While in propositional logic the tableau method could be used as decision procedure, this
will certainly not work in first-order logic anymore. If a formula is not valid, the
systematic method may lead to an infinite tableau. This is, however, not a deficiency of
the tableau method. In fact, there is no correct and complete proof method for first-order
logic that always terminates, as first-order logic is known to undecidable. Neverthelessin
some cases, the tableau method can decide that a formulais invalid athough the proof is
not finished yet. Whenever we have constructed a branch p that represents a Hintkka set
(over the finite domain of the parameters that occur on ), then we know that the origin
FX of the tableau is satisfiable and hence X must be invalid. In these rare cases, the
Hintikka branch gives us a counterexample for the validity of the formula [4].

Example
F (V% (P(X) vQ(x))) => (VX P(X) v (VX Q(X)).
TVx (P(x) v Q(x))

F{(VXPX) v(¥x Q(x))
F Vx P(x)
F Vx Q(x)
F P(a)
F Q(b)

T (P(&) v Q&)

T (P(b) xQ(b))

TP(a) TQ(a)
TP(b) TQ(b)

This tableau cannot be extended anymore in any meaningful way and has one open
branch. We can assume a language with 2 elements in the domain U = {a,b}.and we can
assign T to Q(a) and P(b) and F to Q(b) and P(a)



4. Soundness'
Definition 6

1. AnL-V -structure consists of an L-structure M together with a mapping @ V=2 Uw. If
Aisan L-V -sentence, we write

A® = Ala=_(au/ ®(81),..., & /P (a)]

where as;... ; ac are the parameters occurring in A. Note that A? is an L-Uy-
sentence. Note also that, if A isan L-sentence, then A? = A.

2. Let Sbe afinite or countable set of (signed or unsigned) L-V -sentences. An L-V -
structure M, @is said to satisfy Sif (A% = T for all Ac S. Sissaid to be satisfiable
if there exists an L-V -structure satisfying S.

3. Lett bean L-tableau. We say that T is satisfiable if at |east one path of 1 is satisfiable.

Lemma 1. Let T and t° be tableaux such that 1" is an immediate extension of 1, i.e., 7" is
obtained from 1 by applying a tableau rule to a path of 1. If 1 is satisfiable, then 1’ is
satisfiable.

Proof. The proof consists of one case for each tableau rule. We consider some

representative cases.

Case 1: Suppose that 1’ is obte..1ed from t” by applying the rule

Av B

A B

to the path 6 in 1". Since 7 is satisfiable, it has at least one satisfiable path, S. If S # 6,
then Sisapath of v/, so v’ is satisfiable. If S =6, then 6 is satisfiable, so let M and @ :
V- Uy satisfy 6. In particular viy((AvB) ®) = T, so we have at least one of vy(A®) =T
and vy(B®) = T. Thus M and & satisfy at least one of 8, A and 6, B. Since these are paths
of v, it followsthat 1" is satisfiable.

! The soundness and compl eteness proof are taken from the following reference:
S. Simpson, “Mathematical Logic”, http://www.math.psu.edu/simpson, 2004



Case 2: Suppose that 1’ is obtained from t by applying the rule
WrAd

|
_ﬁl[.r_.-"':r]

to the path 6 in 1, where a is a parameter. Since t is satisfiable, it has at least one
satisfiable path, S. If S# 6, then Sisapath of v, so v’ is satisfiable. If S= 6, then 6 is
satisfiable, solet M and @ : V > Uy satisfy 6. In particular vip(Vx (A®)) = vu((YxA)?) =
T, sovu(A®[x/c]) = T for al c € Uy. In particular

vm(ALx/a ?) = vm(A®IX/(@)]) = T.

Thus M and @ satisfy 0, A[x/a]. Since thisisapath of 7/, it follows that 1’ is satisfiable.

Case 3: Suppose that 1" is obtained from t by applying the rule

|
.ﬁl[.l'_.-"'cr]

to the path 6 in t, where ais a new parameter. Since 1 is satisfiable, it has at least one
satisfiable path, S. If S# 6, then Sis a path of 1/, so 17" is satisfiable. If S=6, then 0 is
satisfiable, solet M and ® : V = Uy, satisfy 6. In particular viu(3x (A®)) = vm((@xA) ®) =
T, so vm(A®[x/c]) = T for at least one c € Uy. Fix such a c and define @”: V > Uy by
putting @’(a) = ¢, and ®’(b) = ® (b) for all b= a b e V . Since ais new, we have B* =
B® for al B € 8, and A% = A®, hence A[x/a]* = A®[x/®’ (a)] = A®[x/c]. Thus vu(B*) =
vm(B®) =T for al B € @, and vim(A[x/a]®) = vu(A®[x/c]) = T. Thus M and &’ satisfy 6,
A[x/d]. Sincethisisapath of 1, it followsthat 1’ is satisfiable.

The Soundness Theorem: Let X;,..., Xk be afinite set of (signed or unsigned) sentences
with parameters. If there exists a finite closed tableau starting with Xj,...,Xk, then
X1,...,Xk IS not satisfiable.



Proof. Let t be a closed tableau starting with Xj,...,Xk. Thus there is a finite sequence of
tableaux 1o; T1,..., Tn = T Such that

X,
0= -
X,

and each T;+; is an immediate extension of t;. Suppose X4,..., Xk is satisfiable. Then 1y is
satisfiable, and by induction on i using Lemma 1, it follows that all of the t; are
satisfiable. In particular T, = T is satisfiable, but thisisimpossible since T is closed.

5. Completeness
Let U be anonempty set, and let S be a set of (signed or unsigned) L -U-sentences.

Definition 7: Sisclosed if S contains a conjugate pair of L-U-sentences. In other words,
for some L-U-sentence A, Scontains TA, FA.

Definition 8: SisU-repleteif S*obeys the tableau rules’ with respect to U. We list some
representative clauses of the definition.

1. If Scontains T —A, then S contains FA. If S contains F —A, then S contains TA.
If S contains —A, then S contains A.

2. If Scontains TA&B, then S contains both TA and TB. If S contains FA&B, then
S contains at least one of FA and FB.

3. If Scontains T AxA, then S contains TA[x/d] for at least oneae U. If S contains
F 3xA, then S contains FA[x/d] for all ae U.

4. If Scontains T VXA, then S contains TA[x/d] for all ae U. If ScontainsF VXA,
then S contains FA[x/a] for at least oneae U.

Lemma 2 (Hintikka's Lemma). If Sis U-replete and open, then Sis satisfiable. In fact, S
is satisfiable in the domain U.

Proof. Assume S is U-replete and open. We define an L-structure M by putting Uy = U
and, for each n-ary predicate P of L,

PM={(ay,...,a) e U": T Pa... e S}
We claim that for all L-U-sentences A,

(@) if Scontains TA, thenvy(A) =T
(b) if Scontains FA, thenvy(A) = F



The claim is easily proved by induction on the degree of A. We give the proof for some
representative cases.

1. deg(A) = 0. Inthiscase A isatomic, say A = Pa;... a..
a) If ScontainsT Pa;... a, then by definition of M we have (ay,..., &) € Pu,
SO VM(Pa]_... an) =T.
b) If ScontainsF Pa;... a, then S does not contain T Pa... a, since Sis open.
Thus by definition of M we have (ay,..., &) ¢ Pu, SOvm(Pa;... &) = F.

2.deg(A) > 0and A = —B. Note that deg(B) < deg(A) so the inductive hypothesis applies
to B.

3.deg(A) > 0and A =B &C. Note that deg(B) and deg(C) are < deg(A) so the inductive
hypothesis appliesto B and C.

(@ If Scontains T B &C, then by repleteness of S we see that S contains both
TB and TC. Hence by inductive hypothesis we have vy(B) =vu(C) = T.
Hencevu(B &C) =T.

(b) If Scontains F B &C, then by repleteness of Swe seethat S contains at |east
one of FB and FC. Hence by inductive hypothesis we have at least one of
vm(B) = Fand vy(C) = F. Hencevy(B &C) = F

4. deg(A) > 0 and A = IxB. Note that for all ae U we have deg(B[x/a]) < deg(A), so the
inductive hypothesis applies to B[ x/d].

5. deg(A) > 0and A = VxB. Notethat for all ae U we have deg(B[x/a]) <deg(A), so the
inductive hypothesis applies to B[x/d].

We shall now use Hintikka's Lemma to prove the completeness of the tableau method.
Let V = {ay,...,a,....} be the set of parameters. Recall that a tableau is a tree whose
nodes carry L-V -sentences.

Lemma 3. Let 1o be a finite tableau. By applying tableau rules, we can extend 1, to a
(possibly infinite) tableau t with the following properties. every closed path of T isfinite,
and every open path of TisV -replete.

Proof: The ideais to start with 1o and use tableau rules to construct a sequence of finite
extensions to, T1,..., T,.... If some t; is closed, then the construction halts, i.e., 7; = 7; for

al j>i, and we set T = 1. In any case, we set T = 1. = | J_ 7. In the course of the

construction, we apply tableau rules systematically to ensure that T, will have the desired
properties, using the fact that V = { &, &,..., &,...} iscountably infinite.

Here are the details of the construction. Call a node X of t; quasiuniversal if it is of the
form TVXA or F IxA or 8VA or —3xA. Our construction begins with to. Suppose we
have constructed . For each quasiuniversal node X of 15 and each n < 2i, apply the
appropriate tableau rule to extend each open path of 15 containing X by TA[x/a,] or



FA[x/a)] or A[x/a)] or —A[x/a,] as the case may be. Let 1541 be the finite tableau so
obtained. Next, for each non-quasiuniversal node X of 7.1, extend each open path
containing X by applying the appropriate tableau rule. Again, let T2 be the finite tableau
so obtained.

In this construction, a closed path is never extended, so all closed paths of 1.. arefinite. In
addition, the construction ensures that each open path of t.. is V-replete. Thus 1.. has the
desired properties. This proves our lemma.

The Completeness Theorem: Let X;,....,.Xx be a finite set of (signed or unsigned)
sentences with parameters. If Xa,..., X is not satisfiable, then there exists a finite closed
tableau starting with Xg,... . Xk. If Xq,...,Xk is satisfiable, then Xj,..., Xk is satisfiable in
thedomain V.

Proof: By Lemma 3 there exists a (possibly infinite) tableau t starting with X4,...,Xx such
that every closed path of t isfinite, and every open path of T is V-replete. If T is closed,
then by Konig's Lemma, t isfinite. If Tt is open, let S be an open path of t. Then SisV-
replete. By Hintikkas Lemma 2, Sissatisfiablein V . Hence X4,..., Xk is satisfiablein V .

6. Conclusion
1. Tableau proof system is an easy to used system for proving the validity of a
formula.
2. Tableau proof system is not used only to prove the validity of a formula but can

also be used to find a counterexample of formulathat is not valid
3. Tableau proof isa Sound and Complete system.
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