Monadic FOL is Decidable

Jie Wu 0426504

> What is Monadic FOL?

L=(Φ , Φ , P) P is a monadic (one-place, unary) predicate which only takes one parameter. Eg. P(x)

Is it Decidable?

First-Order logic is undecidable (Church 1936)

Monadic FOL is a special case. Answer is Yes.

>An intuitive example

 $\exists x.F(x) \land \exists x.G(x)$

 $\therefore \ \exists x.(F(x) \land G(x))$

Theorem 1: (Löwenheim-Skolem 1915)

If S is a monadic sentence which is satisfiable, then S is true in some interpretation whose domain contains at most 2^k r members, k being the number of monadic predicate letters and r being the number of variables

Proof Sketch

Part 1: Proof of decidability of monadic FOL from theorem 1

➢Part 2: Proof of theorem 1

Part 1: Proof of decidability of monadic FOL from theorem 1

- 1. Associate S with a quantifier-free sentence S*, which is satisfiable iff S is.
 - i) Find subformula H for S. E.g $S=\forall x.F(x)\lor \exists y.G(y) H:F(x), G(y), \forall x.F(x)...$
 - ii) Inductively associate a quantifier-free H* with each H:
 - a) If H is atomic, H*=H;
 - b) If H is a truth-functional compound, H* is the same compound
 - c) If H= $\exists vF$, H=F(a₁) \lor F(a₂) \lor ... \lor F(a_m) m= 2^{k*}r
 - d) If $H=\forall vF$, $H=F(a_1) \land F(a_2) \land \dots \land F(a_m)$
 - iii) S and S* has the same truth value in the same interpretation
- 2. S* is easy to decide the validity. So S is decidable.

Proof Sketch

Part 2: Proof of theorem 1

Suppose M is model of S whose domain is D

- 1. For each d in D, let $s(d) = \langle j_1, ..., j_k \rangle$, where, for each I between 1 and k, $j_i = 1$ or 0 according as M specifies that P_i is true or false of d. 2^k such sequence s(d)
- C is similar to d iff s(c)=s(d). Similarity is an equivalence relation. Each d in D belongs to a unique equivalence class. At most 2^k equivalence classes
- 3. Construct a model M^* of S whose domain has at most 2^{k*r} members
 - i) Form a set E: Choose from each equivalence class r members; if there are fewer than r members in the class, take all of the members
 - ii) E contains at most 2^{k*}r members
 - iii) M* is the interpretation whose domain is E, and which specifies that P_i to be true of c iff M specifies that P_i is to be true of any c in E
- 4. M(S)=True, we need to see that M(S)=M*(S)

Proof Sketch

Part 2: Proof of theorem 1 ('cond)

We need to prove $M(S)=M^*(S)$

Lemma 1:

Suppose G is a subsentence of S, that $d_1, \ldots d_n$ is a sequence of elements of D, that $e_1 \ldots e_n$ is a sequence of elements of E, and that $d_1, \ldots d_n$ is exactly like $e_1, \ldots e_n$. Then G is true in $M_{d1\ldots dn}$ iff G is true in $M^*_{e1\ldots en}$

Subsentence: either a subformula of S or that can be obtained from subformula by substituting names

Exactly likeness: $c_1, ..., c_n$ is exactly like $d_1, ..., d_n$ if for every i, c_i is similar to d_i , and for every i, j, $c_i=c_j$ iff $d_i=d_j$

- 1. As S is a subsentence of itself, it follows from Lemma 1 that $M(S)=M^*(S)$.
- 2. Therorem 1 is therefore proved.

Conclusion

➤There is a decision procedure for monadic logic, but it has hyperexponential time complexity

There exists monadic FOL proving systems:

Prof. Manfred von Thun in La Trobe University, Australia did implement one with PASCAL.

Example run:

SOMEBODY IS rich AND SOMEBODY IS humble, EVERYBODY IS (rich OR humble), ALL rich PEOPLE ARE envied, ALL humble PEOPLE ARE friendly ----- EVERYBODY IS (envied AND friendly)?

... is not a valid argument, countermodel - rich = F:{ 2 3 } T:{ 1 } humble = F:{ 1 } T:{ 2 3 } envied = F:{ 3 } T:{ 1 } friendly = T:{ 2 3 }

References:

Computability and Logic, George Boolos and Richard Jeffrey, Cambridge University Press, any edition Modern Logic, Graeme Forbes, Oxford University Press, any edition