

CAS 701 Fall 2004

02 What is Logic?

Instructor: W. M. Farmer

Revised: 14 September 2004

What is Logic?

- Study of the principles of reasoning, particularly the notions of **valid inference** and **proof**.
- Branch of mathematics.
- Crucial distinction: the **syntax** versus the **semantics** of a language.
- Principal tools: formal systems called **logics**.

What is a Logic?

- Informally, a logic is a system of reasoning.
- Formally, a **logic** is a family of **formal languages** with:
 1. A common syntax.
 2. A common semantics.
 3. A notion of **logical consequence**.
- A logic may include a **proof system** for **proving** that a given formula is a logical consequence of a given set of formulas.
- Examples:
 - Propositional logic.
 - First-order logic.
 - Simple type theory (higher-order logic).

Language Syntax

- A language defines a collection of **expressions** formed from:
 - **Variables**.
 - **Constants** (nonlogical constants).
 - **Constructors** (logical constants).
- Two kinds of expressions:
 - **Terms**: Denote objects or values.
 - **Formulas**: Make assertions about objects or values.
- Some languages have constructors that bind variables (e.g., \forall , \exists , λ , I , ϵ , $\{ \mid \}$).

Language Semantics

- A **model** M for a language L is a pair (D, V) where:
 1. D is a set of values called the **domain** that includes the truth values t and f .
 2. V is a function from the expressions of L to D called the **valuation function**.
- M **satisfies** a formula A of L , written $M \models A$, if $V(A) = t$.
- M **satisfies** a set Σ of formulas of L , written $M \models \Sigma$, if M satisfies each $A \in \Sigma$.
- Σ is **satisfiable** if there exists some model for L that satisfies Σ .
- A is **valid**, written $\models A$, if every model for L satisfies A .
- A is a **logical consequence** of Σ , written $\Sigma \models A$, if every model for L that satisfies Σ also satisfies A .

Hilbert-Style Proof System

- A **Hilbert-style proof system** \mathbf{H} for a language L consists of:
 1. A set of formulas of L called **logical axioms**.
 2. A set of **rules of inference**.
- A **proof** of A from Σ in \mathbf{H} is a finite sequence B_1, \dots, B_n of formulas of L with $B_n = A$ such that each B_i is either a logical axiom, a member of Σ , or follows from earlier B_j by one of the rules of inference.
- A is **provable** from Σ in \mathbf{H} , written $\Sigma \vdash_{\mathbf{H}} A$, if there is a proof of A from Σ in \mathbf{H} .
- A is a **theorem** in \mathbf{H} , written $\vdash_{\mathbf{H}} A$, if A is provable from \emptyset in \mathbf{H} .
- Σ is **consistent** in \mathbf{H} if not every formula is provable from Σ in \mathbf{H} .

Kinds of Proof Systems

- Hilbert style.
- Symmetric sequent (Gentzen).
- Asymmetric sequent.
- Natural deduction (Quine, Fitch, Berry).
- Semantic tableaux (Beth, Hintikka).
- Resolution (J. Robinson).

Soundness and Completeness

- Let \mathbf{P} be a proof system for a language L .
- \mathbf{P} is **sound** if

$$\Sigma \vdash_{\mathbf{P}} A \text{ implies } \Sigma \models A$$

- \mathbf{P} is **complete** if

$$\Sigma \models A \text{ implies } \Sigma \vdash_{\mathbf{P}} A$$

Theories

- A **theory** is a pair $T = (L, \Gamma)$ where:
 1. L is a language (the **language** of T).
 2. Γ is a set of formulas of L (the **axioms** of T).
- M is a **model** of T , written $M \models T$, if $M \models \Gamma$.
- A is **valid** in T , written $T \models A$, if $\Gamma \models A$.
- A is a **theorem** of T in \mathbf{P} , written $T \vdash_{\mathbf{P}} A$, if $\Gamma \vdash_{\mathbf{P}} A$.
- T is **satisfiable** if Γ is satisfiable.
- T is **consistent** in \mathbf{P} if Γ is consistent in \mathbf{P} .