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What is Equational Logic?

e Equational logic is first-order logic restricted to
languages with no predicate symbols except =.

e An equational theory is a theory T' = (L, ') of equational
logic such that each A € ' is a universal closure of an
equation of L, i.e., a closed formula of the form

Vxi,...,2n .5 =1.

e Universal algebra is the study of the models of
equational theories.

e Example. The usual theory of groups is an equational
theory.



Term Algebras

e A ground term is a variable-free term.

e The term algebra of a language L = (C,F,P) of FOL
with C = {c1,...,em} # 0 and F = {f1,...,fn} is the
algebra

(Dacla°°°7cm7f17'°°7fn)

where D is the set of ground terms of L.

e A term model of a theory T'= (L,I') of FOL is a model
of T' constructed from the term algebra of L.



Initial Models

e An initial model of a theory T' = (L,I') of FOL is a
model M = (D, I) of T such that:

1. M has no junk, i.e., for every d € D, there is a ground
term of L whose value in M is d.

2. M has no confusion, i.e., for all ground terms s and
t, s=tis truein M iff s=1¢ is valid in T'.

e T heorem. Every equational theory has a unique initial
model.

— The initial model is a term model whose domain
elements are equivalence classes of ground terms.

e [ he initial model semantics is often used in software
engineering and computer science for equational theories
instead of first-order semantics.



Example: Natural Numbers (1)

o Let L = ({0},{S},{=}) be a language of FOL where S is
unary.

e Consider the theory T7 = (L, 0).

— T7 is an equational theory.

e The initial model of Ty is ({0,5(0),S(S(0)),...},0,5).

— Is the term algebra of L.
— Represents the natural numbers.

e [ he other models of 17 have junk or confusion.

— Include both finite and infinite models.
— Some contain “infinite” numbers.



Example: Natural Numbers (2)

e Peano Arithmetic (1889). 7> = (L,I") where I
contains the following three formulas:

1. O has no predecessor. Vz.—(0 = S(x))
2. S is injective. Vz,y.S(z) =SWy) =z=y

3. Induction principle.
VP.(POOANx.P(zx) = P(S(z)))) =>Vz. P(x)

e Theorem (Dedekind, 1888) ({0,5(0),S5(5(0)),...},0,5)

is the unique model of T5 (up to isomorphism). That is,
T> is categorical.

e The functions 4+ and % can be defined in T5.

e 5 cannot be directly formalized in first-order logic.



Example: Natural Numbers (3)

e Peano Arithmetic in FOL. T3 = (L,I) is the theory
of FOL where ' contains the following infinite set of
formulas:

1. O has no predecessor. Vz .—(0 = S(x))
2. S is injective. Vz,y.S(x) =S(y) =>z =y
3. Induction schema.
(Alrt — O)]A(Vx . A= Alx — S(x)])) =Vx. A
for each formula A of L.

e ({0,5(0),5(5(0)),...},0,5) is the standard model of T3.

e Theorem. 73 has nonstandard models. This is, T3 is
not categorical.

— The proof is by the compactness theorem.

e T he functions 4+ and % cannot be defined in T3.



Specifications and Descriptions

e A specification of a system S can be formalized as a
theory T in some logic.

— Each model of T represents an implementation of S.

— First-order logic and simple type theory are good for
specifying systems.

e A description of a system S can be formalized as a
categorical theory T' in some logic.

— The unique model of T represents S (up to
isomorphism).
— Equational logic with the initial model semantics and

simple type theory are good for describing systems,
but first-order logic is often not good.



Algebraic Reasoning

e Let L be a language of FOL and 7 be the set of terms
of L.

e Let R be a set of functionsr : 7 — 7 called computation
rules of L.

— re R issound if t =r(t) for all t € 7 with »(¢t)|.

e A computation in R is a finite sequence C = (t1,...,tn)
of terms of L such that, for all : with 1 <17 < n, there is
some r € R such that t;,4 1 = r(t;).

e Proposition. Suppose each r € R is sound. If (t1,...,tn)
is @ computation in ‘R, then t1 = t,.



Substitutions

e Let L = (C,F,P) be alanguage of FOL and 7 be the set
of terms of L.

e A substitution of L is a total function o :V — 7.

e [ he application of a substitution o to an expression E
of L, written Eo, is defined by recursion as follows:

—Ifx eV, vo =o0(x).

— If ce(C, co =c.

—If f € Fis n-ary and tq,...,t, are terms of L, then
f(t1,...,tn)oc = f(t10,...,tnho).

— If p € Pis n-ary and tq,...,t, are terms of L, then
p(t1,...,tn)o = p(tio,...,tho).

— If A and B are formulas of L, then (=A)c = —(Ao) and
(A= B)o = (Ao = Bo).

— Ifz €V and A is a formula of L, then (Vz . A)o =
(Vz . Ad’) where ¢/(z) = = and o¢'(y) = o(y) for all
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Matching

e Let s and ¢t be terms and A and B be formulas of a
language L of FOL.

e s matches ¢ if there is a substitution o of L such that
s = to. Similarly, A matches B if there is a substitution
o of L such that A = Bo.

e If s matches ¢, then s is an instance of the pattern ¢.

e Matching is used in many places in CS and SE, e.qg., in
term rewriting.
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Unification

e Let s and ¢t be terms and A and B be formulas of a
language L of FOL.

e s and ¢t unify if there is a substitution o of L such that
so = to. Similarly, A and B unify if there is a substitution
o of L such that Ac = Bo.

e Unification is solving equations by syntax alone.
e T he unifying substitution is called a unifier.

e Unification is used in many places in CS and SE, e.qg., in
resolution theorem proving and logic programming.
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Most General Unifiers

e A most general unifier of s and t is a unifier o of s
and t such that, if ¢/ is a unifier of s and ¢, then there is
substitution = such that, for all z € V,

zo' = (xo)T.

e T heorem. For every pair of terms s and ¢t of L, if s and
t are unifiable, there is a most general unifier of s and ¢
that is unique up to a renaming of variables.

e T he first algorithm to compute the most general unifier
of two first-order terms was given by Herbrand in 1930.
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Equational Reasoning

e In an equational theory T'= (L, "), the fundamental rules
of inference are substitution and replacement:

— If T =s=t, then T = so = to for every substitution
o of L.

— If Tl=s=t, then T |=u = v where u/ is obtained by
replacing one occurrence of s in u by t.

e Problem: How do we choose the substitutions?
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Term Rewriting Systems

e Let L be a language of FOL and 7 be the set of terms
of L.

e A rewrite rule of L is a directed equation of L, written
s — t, such that all the variables of ¢t are contained in s.

o A term rewriting system of L is a set R of rewrite rules
of L.

e The reduction relation —, C 7 x 7 is the smallest
relation containing R and closed under substitution and
replacement:

— If s —p t, then so —p to for every substitution o of L.
— If s = t, then u —, u’ where v/ is obtained by
replacing one occurrence of s in u by t.
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Other Relations

—>;‘z: the reflexive-transitive closure of —..
s the symmetric closure of —.

<—>;‘z: the reflexive-symmetric-transitive closure of —5-
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Soundness and Completeness

e Let T= (L,I") be an equational theory and R be a term
rewriting system for L.

e R is sound with respect to T if

s -t implies T = s=t.

e R is complete with respect to T if

T =s=t implies s<x3t.

e Proposition. Foreach s =t & [, assume all the variables
of ¢t are contained in s. Then R ={s—t|s=teTl}is
a term rewrite system of L which is sound and complete
with respect to T..
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Norm Forms

o Let R be a term rewriting system for L.

e A term s of L is in normal form relative to R if there is
no term ¢t such that s —p t.

— That is, no subterm of s matches the left side of a
rewrite rule in R.

e £ is a normal form of s relative to R if s _>3kz t and t is in
normal form relative to R.
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Properties of Term Rewriting Systems

o Let R be a term rewriting system for L.

e R is Church-Rosser if, for all terms s,t of L, s (_% t iff
there exists some « such that s —>3kz w and t —>;‘z Uu.

e R is confluent if, for all terms s,t,u of L, u —% s and
U _>3<z t implies there is some term v such that s —>;‘z v
and t —>>7kz .

e R is noetherian or finitely terminating if there is no
infinite chain of reductions

81 _>R82_>RS3_>R“‘
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T heorems of Term Rewriting Systems

o Let R be a term rewriting system for L.
e Theorem. R is Church-Rosser iff R is confluent.

e Proposition. If R is confluent, then the normal form of
a term of L is unique when it exists.

e Proposition. If R is finitely terminating, then every term
of L has a normal form.

e Theorem. Let T'= (L,I) be an equational theory and
R be sound and complete with respect to 7', finite,
confluent, and finitely terminating. Then:

1. Every term s of L has a unique normal form ¢ relative
to R such that T = s = t.

2. It is decidable whether T |= s = t.
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Knuth-Bendix Completion Algorithm

e Let T = (L,IN) be an equational theory such that I is
finite.

e Given [ and a reduction order as input, the Knuth-
Bendix completion algorithm does one of the following:

1. Returns a term rewriting system R for L that is sound
and complete with respect to T, finite, confluent, and
finitely terminating.

2. Terminates with failure.

3. Loops without terminating.

e [ he algorithm is composed of two steps:

1. Creation of an initial set of rules by orienting the
members of [ according to the reduction order.

2. Derivation of additions rules using critical pairs.
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Restricted Systems of First-Order LodgicC

e A conditional equation is a formula of the form
A= s =1.

— Are used as conditional rewrite rules.

e A Horn clause is a formula of the form
AN NAp, = B
where Aq,..., Ay, B are positive literals and n > 0.

— A Horn clause of the form B is called a goal.

e Computation in restricted systems:

Kind of Formulas Kind of Computation

equations term rewriting
conditional equations constraint programming
Horn clauses logic programming

22



