
CAS 701 Fall 2004

07 Equational Logic and
Algebraic Reasoning

Instructor: W. M. Farmer

Revised: 17 November 2004

1



What is Equational Logic?

• Equational logic is first-order logic restricted to

languages with no predicate symbols except =.

• An equational theory is a theory T = (L,Γ) of equational

logic such that each A ∈ Γ is a universal closure of an

equation of L, i.e., a closed formula of the form

∀x1, . . . , xn . s = t.

• Universal algebra is the study of the models of

equational theories.

• Example. The usual theory of groups is an equational

theory.

2



Term Algebras

• A ground term is a variable-free term.

• The term algebra of a language L = (C,F ,P) of FOL

with C = {c1, . . . , cm} 6= ∅ and F = {f1, . . . , fn} is the

algebra

(D, c1, . . . , cm, f1, . . . , fn)

where D is the set of ground terms of L.

• A term model of a theory T = (L,Γ) of FOL is a model

of T constructed from the term algebra of L.
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Initial Models

• An initial model of a theory T = (L,Γ) of FOL is a

model M = (D, I) of T such that:

1. M has no junk, i.e., for every d ∈ D, there is a ground

term of L whose value in M is d.

2. M has no confusion, i.e., for all ground terms s and

t, s = t is true in M iff s = t is valid in T .

• Theorem. Every equational theory has a unique initial

model.

– The initial model is a term model whose domain

elements are equivalence classes of ground terms.

• The initial model semantics is often used in software

engineering and computer science for equational theories

instead of first-order semantics.
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Example: Natural Numbers (1)

• Let L = ({0}, {S}, {=}) be a language of FOL where S is

unary.

• Consider the theory T1 = (L, ∅).

– T1 is an equational theory.

• The initial model of T1 is ({0, S(0), S(S(0)), . . .},0, S).

– Is the term algebra of L.

– Represents the natural numbers.

• The other models of T1 have junk or confusion.

– Include both finite and infinite models.

– Some contain “infinite” numbers.
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Example: Natural Numbers (2)

• Peano Arithmetic (1889). T2 = (L,Γ) where Γ

contains the following three formulas:

1. 0 has no predecessor. ∀x . ¬(0 = S(x))

2. S is injective. ∀x, y . S(x) = S(y) ⇒ x = y

3. Induction principle.

∀P . (P (0) ∧ (∀x . P (x) ⇒ P (S(x)))) ⇒ ∀x . P (x)

• Theorem (Dedekind, 1888) ({0, S(0), S(S(0)), . . .},0, S)

is the unique model of T2 (up to isomorphism). That is,

T2 is categorical.

• The functions + and ∗ can be defined in T2.

• T2 cannot be directly formalized in first-order logic.
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Example: Natural Numbers (3)

• Peano Arithmetic in FOL. T3 = (L,Γ) is the theory

of FOL where Γ contains the following infinite set of

formulas:

1. 0 has no predecessor. ∀x . ¬(0 = S(x))

2. S is injective. ∀x, y . S(x) = S(y) ⇒ x = y

3. Induction schema.

(A[x 7→ 0] ∧ (∀x . A ⇒ A[x 7→ S(x)])) ⇒ ∀x . A

for each formula A of L.

• ({0, S(0), S(S(0)), . . .},0, S) is the standard model of T3.

• Theorem. T3 has nonstandard models. This is, T3 is

not categorical.

– The proof is by the compactness theorem.

• The functions + and ∗ cannot be defined in T3.
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Specifications and Descriptions

• A specification of a system S can be formalized as a

theory T in some logic.

– Each model of T represents an implementation of S.

– First-order logic and simple type theory are good for

specifying systems.

• A description of a system S can be formalized as a

categorical theory T in some logic.

– The unique model of T represents S (up to

isomorphism).

– Equational logic with the initial model semantics and

simple type theory are good for describing systems,

but first-order logic is often not good.
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Algebraic Reasoning

• Let L be a language of FOL and T be the set of terms

of L.

• Let R be a set of functions r : T → T called computation

rules of L.

– r ∈ R is sound if t = r(t) for all t ∈ T with r(t)↓.

• A computation in R is a finite sequence C = 〈t1, . . . , tn〉
of terms of L such that, for all i with 1 ≤ i < n, there is

some r ∈ R such that ti+1 = r(ti).

• Proposition. Suppose each r ∈ R is sound. If 〈t1, . . . , tn〉
is a computation in R, then t1 = tn.
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Substitutions

• Let L = (C,F ,P) be a language of FOL and T be the set
of terms of L.

• A substitution of L is a total function σ : V → T .

• The application of a substitution σ to an expression E
of L, written Eσ, is defined by recursion as follows:

– If x ∈ V, xσ = σ(x).

– If c ∈ C, cσ = c.

– If f ∈ F is n-ary and t1, . . . , tn are terms of L, then
f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).

– If p ∈ P is n-ary and t1, . . . , tn are terms of L, then
p(t1, . . . , tn)σ = p(t1σ, . . . , tnσ).

– If A and B are formulas of L, then (¬A)σ = ¬(Aσ) and
(A ⇒ B)σ = (Aσ ⇒ Bσ).

– If x ∈ V and A is a formula of L, then (∀x . A)σ =
(∀x . Aσ′) where σ′(x) = x and σ′(y) = σ(y) for all
y 6= x.
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Matching

• Let s and t be terms and A and B be formulas of a

language L of FOL.

• s matches t if there is a substitution σ of L such that

s = tσ. Similarly, A matches B if there is a substitution

σ of L such that A = Bσ.

• If s matches t, then s is an instance of the pattern t.

• Matching is used in many places in CS and SE, e.g., in

term rewriting.
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Unification

• Let s and t be terms and A and B be formulas of a

language L of FOL.

• s and t unify if there is a substitution σ of L such that

sσ = tσ. Similarly, A and B unify if there is a substitution

σ of L such that Aσ = Bσ.

• Unification is solving equations by syntax alone.

• The unifying substitution is called a unifier.

• Unification is used in many places in CS and SE, e.g., in

resolution theorem proving and logic programming.
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Most General Unifiers

• A most general unifier of s and t is a unifier σ of s

and t such that, if σ′ is a unifier of s and t, then there is

substitution τ such that, for all x ∈ V,

xσ′ = (xσ)τ.

• Theorem. For every pair of terms s and t of L, if s and

t are unifiable, there is a most general unifier of s and t

that is unique up to a renaming of variables.

• The first algorithm to compute the most general unifier

of two first-order terms was given by Herbrand in 1930.
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Equational Reasoning

• In an equational theory T = (L,Γ), the fundamental rules

of inference are substitution and replacement:

– If T |= s = t, then T |= sσ = tσ for every substitution

σ of L.

– If T |= s = t, then T |= u = u′ where u′ is obtained by

replacing one occurrence of s in u by t.

• Problem: How do we choose the substitutions?
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Term Rewriting Systems

• Let L be a language of FOL and T be the set of terms

of L.

• A rewrite rule of L is a directed equation of L, written

s → t, such that all the variables of t are contained in s.

• A term rewriting system of L is a set R of rewrite rules

of L.

• The reduction relation →R ⊆ T × T is the smallest

relation containing R and closed under substitution and

replacement:

– If s →R t, then sσ →R tσ for every substitution σ of L.

– If s →R t, then u →R u′ where u′ is obtained by

replacing one occurrence of s in u by t.
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Other Relations

→∗
R: the reflexive-transitive closure of →R.

↔R: the symmetric closure of →R.

↔∗
R: the reflexive-symmetric-transitive closure of →R.
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Soundness and Completeness

• Let T = (L,Γ) be an equational theory and R be a term

rewriting system for L.

• R is sound with respect to T if

s →R t implies T |= s = t.

• R is complete with respect to T if

T |= s = t implies s ↔∗
R t.

• Proposition. For each s = t ∈ Γ, assume all the variables

of t are contained in s. Then R = {s → t | s = t ∈ Γ} is

a term rewrite system of L which is sound and complete

with respect to T .
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Norm Forms

• Let R be a term rewriting system for L.

• A term s of L is in normal form relative to R if there is

no term t such that s →R t.

– That is, no subterm of s matches the left side of a

rewrite rule in R.

• t is a normal form of s relative to R if s →∗
R t and t is in

normal form relative to R.
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Properties of Term Rewriting Systems

• Let R be a term rewriting system for L.

• R is Church-Rosser if, for all terms s, t of L, s ↔∗
R t iff

there exists some u such that s →∗
R u and t →∗

R u.

• R is confluent if, for all terms s, t, u of L, u →∗
R s and

u →∗
R t implies there is some term v such that s →∗

R v

and t →∗
R v.

• R is noetherian or finitely terminating if there is no

infinite chain of reductions

s1 →R s2 →R s3 →R · · ·.
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Theorems of Term Rewriting Systems

• Let R be a term rewriting system for L.

• Theorem. R is Church-Rosser iff R is confluent.

• Proposition. If R is confluent, then the normal form of

a term of L is unique when it exists.

• Proposition. If R is finitely terminating, then every term

of L has a normal form.

• Theorem. Let T = (L,Γ) be an equational theory and

R be sound and complete with respect to T , finite,

confluent, and finitely terminating. Then:

1. Every term s of L has a unique normal form t relative

to R such that T |= s = t.

2. It is decidable whether T |= s = t.
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Knuth-Bendix Completion Algorithm

• Let T = (L,Γ) be an equational theory such that Γ is

finite.

• Given Γ and a reduction order as input, the Knuth-

Bendix completion algorithm does one of the following:

1. Returns a term rewriting system R for L that is sound

and complete with respect to T , finite, confluent, and

finitely terminating.

2. Terminates with failure.

3. Loops without terminating.

• The algorithm is composed of two steps:

1. Creation of an initial set of rules by orienting the

members of Γ according to the reduction order.

2. Derivation of additions rules using critical pairs.
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Restricted Systems of First-Order Logic

• A conditional equation is a formula of the form

A ⇒ s = t.

– Are used as conditional rewrite rules.

• A Horn clause is a formula of the form

A1 ∧ · · · ∧An ⇒ B

where A1, . . . , An, B are positive literals and n ≥ 0.

– A Horn clause of the form B is called a goal.

• Computation in restricted systems:

Kind of Formulas Kind of Computation
equations term rewriting
conditional equations constraint programming
Horn clauses logic programming
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