07 Equational Logic and Algebraic Reasoning

Instructor: W. M. Farmer

Revised: 17 November 2004
What is Equational Logic?

- **Equational logic** is first-order logic restricted to languages with no predicate symbols except \equiv.

- An **equational theory** is a theory $T = (L, \Gamma)$ of equational logic such that each $A \in \Gamma$ is a universal closure of an equation of L, i.e., a closed formula of the form
 \[\forall x_1, \ldots, x_n \cdot s = t. \]

- **Universal algebra** is the study of the models of equational theories.

- **Example.** The usual theory of groups is an equational theory.
Term Algebras

• A **ground term** is a variable-free term.

• The **term algebra** of a language $L = (C, F, P)$ of FOL with $C = \{c_1, \ldots, c_m\} \neq \emptyset$ and $F = \{f_1, \ldots, f_n\}$ is the algebra

 $$(D, c_1, \ldots, c_m, f_1, \ldots, f_n)$$

 where D is the set of ground terms of L.

• A **term model** of a theory $T = (L, \Gamma)$ of FOL is a model of T constructed from the term algebra of L.
Initial Models

• An initial model of a theory $T = (L, \Gamma)$ of FOL is a model $M = (D, I)$ of T such that:

 1. M has no junk, i.e., for every $d \in D$, there is a ground term of L whose value in M is d.
 2. M has no confusion, i.e., for all ground terms s and t, $s = t$ is true in M iff $s = t$ is valid in T.

• Theorem. Every equational theory has a unique initial model.
 – The initial model is a term model whose domain elements are equivalence classes of ground terms.

• The initial model semantics is often used in software engineering and computer science for equational theories instead of first-order semantics.
Example: Natural Numbers (1)

- Let $L = (\{0\}, \{S\}, \{=\})$ be a language of FOL where S is unary.

- Consider the theory $T_1 = (L, \emptyset)$.
 - T_1 is an equational theory.

- The initial model of T_1 is $(\{0, S(0), S(S(0)), \ldots\}, 0, S)$.
 - Is the term algebra of L.
 - Represents the natural numbers.

- The other models of T_1 have junk or confusion.
 - Include both finite and infinite models.
 - Some contain “infinite” numbers.
Example: Natural Numbers (2)

- **Peano Arithmetic (1889).** \(T_2 = (L, \Gamma) \) where \(\Gamma \) contains the following three formulas:
 1. **0 has no predecessor.** \(\forall x . \neg (0 = S(x)) \)
 2. **S is injective.** \(\forall x, y . S(x) = S(y) \Rightarrow x = y \)
 3. **Induction principle.**
 \[\forall P . (P(0) \land (\forall x . P(x) \Rightarrow P(S(x)))) \Rightarrow \forall x . P(x) \]

- **Theorem (Dedekind, 1888)** \(\{0, S(0), S(S(0)), \ldots\}, 0, S \) is the unique model of \(T_2 \) (up to isomorphism). That is, \(T_2 \) is **categorical**.

- The functions \(+ \) and \(\ast \) can be defined in \(T_2 \).

- \(T_2 \) cannot be directly formalized in first-order logic.
Example: Natural Numbers (3)

- **Peano Arithmetic in FOL.** $T_3 = (L, \Gamma)$ is the theory of FOL where Γ contains the following infinite set of formulas:
 1. **0 has no predecessor.** $\forall x . \neg(0 = S(x))$
 2. **S is injective.** $\forall x, y . S(x) = S(y) \Rightarrow x = y$
 3. **Induction schema.**

 $(A[x \mapsto 0] \land (\forall x . A \Rightarrow A[x \mapsto S(x)])) \Rightarrow \forall x . A$

 for each formula A of L.

- $\{0, S(0), S(S(0)), \ldots\}, 0, S$ is the **standard model** of T_3.

- **Theorem.** T_3 has nonstandard models. This is, T_3 is **not categorical**.
 - The proof is by the compactness theorem.

- The functions $+$ and \ast cannot be defined in T_3.
Specifications and Descriptions

- A **specification** of a system S can be formalized as a theory T in some logic.
 - Each model of T represents an **implementation** of S.
 - First-order logic and simple type theory are good for specifying systems.

- A **description** of a system S can be formalized as a categorical theory T in some logic.
 - The unique model of T represents S (up to isomorphism).
 - Equational logic with the initial model semantics and simple type theory are good for describing systems, but first-order logic is often not good.
Algebraic Reasoning

• Let L be a language of FOL and \mathcal{T} be the set of terms of L.

• Let \mathcal{R} be a set of functions $r : \mathcal{T} \rightarrow \mathcal{T}$ called computation rules of L.

 $\quad r \in \mathcal{R}$ is sound if $t = r(t)$ for all $t \in \mathcal{T}$ with $r(t) \downarrow$.

• A computation in \mathcal{R} is a finite sequence $C = \langle t_1, \ldots, t_n \rangle$ of terms of L such that, for all i with $1 \leq i < n$, there is some $r \in \mathcal{R}$ such that $t_{i+1} = r(t_i)$.

• Proposition. Suppose each $r \in \mathcal{R}$ is sound. If $\langle t_1, \ldots, t_n \rangle$ is a computation in \mathcal{R}, then $t_1 = t_n$.
Substitutions

- Let $L = (C, F, P)$ be a language of FOL and T be the set of terms of L.

- A substitution of L is a total function $\sigma : V \rightarrow T$.

- The application of a substitution σ to an expression E of L, written $E\sigma$, is defined by recursion as follows:
 - If $x \in V$, $x\sigma = \sigma(x)$.
 - If $c \in C$, $c\sigma = c$.
 - If $f \in F$ is n-ary and t_1, \ldots, t_n are terms of L, then $f(t_1, \ldots, t_n)\sigma = f(t_1\sigma, \ldots, t_n\sigma)$.
 - If $p \in P$ is n-ary and t_1, \ldots, t_n are terms of L, then $p(t_1, \ldots, t_n)\sigma = p(t_1\sigma, \ldots, t_n\sigma)$.
 - If A and B are formulas of L, then $(\neg A)\sigma = \neg(A\sigma)$ and $(A \Rightarrow B)\sigma = (A\sigma \Rightarrow B\sigma)$.
 - If $x \in V$ and A is a formula of L, then $(\forall x . A)\sigma = (\forall x . A\sigma')$ where $\sigma'(x) = x$ and $\sigma'(y) = \sigma(y)$ for all $y \neq x$.
Matching

• Let s and t be terms and A and B be formulas of a language L of FOL.

• s matches t if there is a substitution σ of L such that $s = t\sigma$. Similarly, A matches B if there is a substitution σ of L such that $A = B\sigma$.

• If s matches t, then s is an instance of the pattern t.

• Matching is used in many places in CS and SE, e.g., in term rewriting.
Unification

• Let s and t be terms and A and B be formulas of a language L of FOL.

• s and t unify if there is a substitution σ of L such that $s\sigma = t\sigma$. Similarly, A and B unify if there is a substitution σ of L such that $A\sigma = B\sigma$.

• Unification is solving equations by syntax alone.

• The unifying substitution is called a unifier.

• Unification is used in many places in CS and SE, e.g., in resolution theorem proving and logic programming.
Most General Unifiers

• A **most general unifier** of \(s \) and \(t \) is a unifier \(\sigma \) of \(s \) and \(t \) such that, if \(\sigma' \) is a unifier of \(s \) and \(t \), then there is substitution \(\tau \) such that, for all \(x \in \mathcal{V} \),

\[
x\sigma' = (x\sigma)\tau.
\]

• **Theorem.** For every pair of terms \(s \) and \(t \) of \(L \), if \(s \) and \(t \) are unifiable, there is a most general unifier of \(s \) and \(t \) that is unique up to a renaming of variables.

• The first algorithm to compute the most general unifier of two first-order terms was given by Herbrand in 1930.
Equational Reasoning

• In an equational theory $T = (L, \Gamma)$, the fundamental rules of inference are substitution and replacement:

 – If $T \models s = t$, then $T \models s\sigma = t\sigma$ for every substitution σ of L.
 – If $T \models s = t$, then $T \models u = u'$ where u' is obtained by replacing one occurrence of s in u by t.

• Problem: How do we choose the substitutions?
Term Rewriting Systems

• Let L be a language of FOL and T be the set of terms of L.

• A **rewrite rule** of L is a directed equation of L, written $s \rightarrow t$, such that all the variables of t are contained in s.

• A **term rewriting system** of L is a set \mathcal{R} of rewrite rules of L.

• The **reduction relation** $\rightarrow_{\mathcal{R}} \subseteq T \times T$ is the smallest relation containing \mathcal{R} and closed under **substitution** and replacement:

 - If $s \rightarrow_{\mathcal{R}} t$, then $s\sigma \rightarrow_{\mathcal{R}} t\sigma$ for every substitution σ of L.
 - If $s \rightarrow_{\mathcal{R}} t$, then $u \rightarrow_{\mathcal{R}} u'$ where u' is obtained by replacing one occurrence of s in u by t.

Other Relations

$\rightarrow^*: \text{the reflexive-transitive closure of } \rightarrow_R$.

$\leftrightarrow_R: \text{the symmetric closure of } \rightarrow_R$.

$\leftrightarrow^*_R: \text{the reflexive-symmetric-transitive closure of } \rightarrow_R$.
Soundness and Completeness

- Let $T = (L, \Gamma)$ be an equational theory and \mathcal{R} be a term rewriting system for L.

- \mathcal{R} is **sound** with respect to T if

 $$s \rightarrow_{\mathcal{R}} t \ \text{implies} \ T \models s = t.$$

- \mathcal{R} is **complete** with respect to T if

 $$T \models s = t \ \text{implies} \ s \leftrightarrow_{\mathcal{R}}^* t.$$

- **Proposition.** For each $s = t \in \Gamma$, assume all the variables of t are contained in s. Then $\mathcal{R} = \{s \rightarrow t \mid s = t \in \Gamma\}$ is a term rewrite system of L which is sound and complete with respect to T.

Norm Forms

• Let \mathcal{R} be a term rewriting system for L.

• A term s of L is in **normal form** relative to \mathcal{R} if there is no term t such that $s \rightarrow^\ast_{\mathcal{R}} t$.

 – That is, no subterm of s matches the left side of a rewrite rule in \mathcal{R}.

• t is a **normal form** of s relative to \mathcal{R} if $s \rightarrow^\ast_{\mathcal{R}} t$ and t is in normal form relative to \mathcal{R}.
Properties of Term Rewriting Systems

- Let \mathcal{R} be a term rewriting system for L.

- \mathcal{R} is **Church-Rosser** if, for all terms s, t of L, $s \leftrightarrow^*_\mathcal{R} t$ iff there exists some u such that $s \rightarrow^*_\mathcal{R} u$ and $t \rightarrow^*_\mathcal{R} u$.

- \mathcal{R} is **confluent** if, for all terms s, t, u of L, $u \rightarrow^*_\mathcal{R} s$ and $u \rightarrow^*_\mathcal{R} t$ implies there is some term v such that $s \rightarrow^*_\mathcal{R} v$ and $t \rightarrow^*_\mathcal{R} v$.

- \mathcal{R} is **noetherian** or **finitely terminating** if there is no infinite chain of reductions

 $$s_1 \rightarrow^\mathcal{R} s_2 \rightarrow^\mathcal{R} s_3 \rightarrow^\mathcal{R} \cdots.$$
Theorems of Term Rewriting Systems

• Let \mathcal{R} be a term rewriting system for L.

• **Theorem.** \mathcal{R} is Church-Rosser iff \mathcal{R} is confluent.

• **Proposition.** If \mathcal{R} is confluent, then the normal form of a term of L is unique when it exists.

• **Proposition.** If \mathcal{R} is finitely terminating, then every term of L has a normal form.

• **Theorem.** Let $T = (L, \Gamma)$ be an equational theory and \mathcal{R} be sound and complete with respect to T, finite, confluent, and finitely terminating. Then:
 1. Every term s of L has a unique normal form t relative to \mathcal{R} such that $T \models s = t$.
 2. It is decidable whether $T \models s = t$.

Knuth-Bendix Completion Algorithm

- Let $T = (L, \Gamma)$ be an equational theory such that Γ is finite.

- Given Γ and a reduction order as input, the Knuth-Bendix completion algorithm does one of the following:
 1. Returns a term rewriting system \mathcal{R} for L that is sound and complete with respect to T, finite, confluent, and finitely terminating.
 2. Terminates with failure.
 3. Loops without terminating.

- The algorithm is composed of two steps:
 1. Creation of an initial set of rules by orienting the members of Γ according to the reduction order.
Restricted Systems of First-Order Logic

• A **conditional equation** is a formula of the form

\[A \Rightarrow s = t. \]

- Are used as conditional rewrite rules.

• A **Horn clause** is a formula of the form

\[A_1 \land \cdots \land A_n \Rightarrow B \]

where \(A_1, \ldots, A_n, B \) are positive literals and \(n \geq 0 \).

- A Horn clause of the form \(B \) is called a **goal**.

• Computation in restricted systems:

<table>
<thead>
<tr>
<th>Kind of Formulas</th>
<th>Kind of Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>equations</td>
<td>term rewriting</td>
</tr>
<tr>
<td>conditional equations</td>
<td>constraint programming</td>
</tr>
<tr>
<td>Horn clauses</td>
<td>logic programming</td>
</tr>
</tbody>
</table>