

CAS 701 Fall 2004

12 Axiomatic Method

Instructor: W. M. Farmer

Revised: 14 November 2004

What is the Axiomatic Method?

1. A mathematical model is expressed as a set of axioms (in a language) called an **axiomatic theory**.
2. New concepts are introduced by making **definitions**.
3. Assertions about the model are stated as **theorems** and proved from the axioms.

Notes:

- The axiomatic method is a method of **presentation**, not a method of **discovery** (Lakatos).
- The axiomatic method can be used as a method of **organization**.

History

- Euclid (325–265 BC) used the axiomatic method to present the mathematics known in his time in the **Elements**.
 - The axioms were considered truths.
- The development of **noneuclidean geometry** by Bolyai, Gauss, and Lobachevskii (early 1800s) showed that axioms may be considered as just assumptions.
- Whitehead and Russell formalized a major portion of mathematics in the **Principia Mathematica** (1910–1913).
- Bourbaki (mid 1900s) used the axiomatic method to codify mathematics in the 30 volume **Eléments de mathématique**.
- Several libraries of formalized mathematics have been developed since the late 1980s using interactive theorem provers: HOL, IMPS, Isabelle, Mizar, Nqthm, Nuprl, PVS.

Axiomatic Theories

- **Theory** = formal language + set of axioms.
- **Language**: vocabulary for objects and their properties.
 - Has a precise semantics (with a notion of logical consequence).
 - Can be used to describe multiple situations.
 - The language usually belongs to a **logic**.
- **Axioms**: assumptions about the objects and properties.
 - Specify a class of **models**.
 - Basis for proving **theorems**.

Example: Theory of Partial Order

- Language: A language of first-order logic language with a binary predicate symbol \leq .
 - $a \leq b$ is intended to mean a is less than or equal to b .
- Axioms:
 - **Reflexivity**. $\forall x . x \leq x$.
 - **Transitivity**. $\forall x, y, z . (x \leq y \wedge y \leq z) \Rightarrow x \leq z$.
 - **Antisymmetry**. $\forall x, y . (x \leq y \wedge y \leq x) \Rightarrow x = y$.
- The theory has infinitely many nonisomorphic models.

Example: Peano Arithmetic

- Language: A language of second-order logic with a constant symbol 0 and unary function symbol S .
 - 0 is intended to represent the number zero.
 - S is intended to represent the successor function, i.e., $S(a)$ means $a + 1$.
- Axioms:
 - **0 has no predecessor.** $\forall x . \neg(0 = S(x))$.
 - **S is injective.** $\forall x, y . S(x) = S(y) \Rightarrow x = y$.
 - **Induction principle.**
$$\forall P . (P(0) \wedge \forall x . P(x) \Rightarrow P(S(x))) \Rightarrow \forall x . P(x).$$
- Second-order Peano arithmetic is **categorical**, i.e, it has exactly one model up to isomorphism.

Benefits of Axiomatic Theories

- **Conceptual clarity:** inessential details are omitted.
- **Generality:** theorems hold in all models.
- **Dual purpose:** a theory can be viewed as:
 - An abstract mathematical model.
 - A specification of a collection of mathematical models.

Theory Interpretations

- A **translation** Φ from T to T' is a function that maps the primitive symbols of T to expressions of T' satisfying certain syntactic conditions.
- Φ determines:
 - A mapping of expressions of T to expressions of T' .
 - Set of sentences called **obligations**.
- Φ is an **interpretation** if it maps the theorems of T to theorems of T' .
 - Sufficient condition: the obligations of Φ are theorems of T' .
- **Interpretations are information conduits!**

Example: Theory of Computer Networks

- Theory name: Networks.
- Language: A language of many-sorted first-order logic with the following sorts and function symbols:

Sorts	Function symbols
boxes	box-of-interface
wires	wire-of-interface
interfaces	address-of-interface
addresses	

- Example axioms:
 - “Every box has a unique loopback interface”.
 - “The address of a loopback interface is 127.0.0.1”.

Example: Theory of Bipartite Graphs

- Theory name: Bipartite Graphs.
- Language: A language of many-sorted first-order logic with the following sorts and function symbols:

Sorts	Operators
red-nodes	red-node-of-edge
blue-nodes	blue-node-of-edge
edges	

- No explicit axioms.

Example: Bipartite Graphs to Networks

- Let $\Phi_{BG \rightarrow N}$ be the translation from Bipartite Graphs to Networks defined by:
 - red-nodes \mapsto boxes.
 - blue-nodes \mapsto wires.
 - edges \mapsto interfaces.
 - red-node-of-edge \mapsto box-of-interface.
 - blue-node-of-edge \mapsto wire-of-interface.
- $\Phi_{BG \rightarrow N}$ has no obligations.
- $\Phi_{BG \rightarrow N}$ is an interpretation.
 - “Transitivity of red-to-red connectivity” maps to “transitivity of box-to-box connectivity”.

Example: Symmetry Interpretation

- Let $\Phi_{BG \rightarrow BG}$ be the translation from Bipartite Graphs to Bipartite Graphs defined by:
 - red-nodes \mapsto blue-nodes.
 - blue-nodes \mapsto red-nodes.
 - edges \mapsto edges.
 - red-node-of-edge \mapsto blue-node-of-edge.
 - blue-node-of-edge \mapsto red-node-of-edge.
- $\Phi_{BG \rightarrow BG}$ has no obligations.
- $\Phi_{BG \rightarrow BG}$ is an interpretation.
 - “Transitivity of red to red connectivity” maps to “transitivity of blue to blue connectivity”.

Two Versions of the Axiomatic Method

1. **Big Theory:** A body of mathematics is entirely represented in one theory.
 - Often a powerful, highly expressive theory like set theory is selected.
 - All reasoning is performed within this single theory.
2. **Little Theories:** A body of mathematics is represented as a network of theories.
 - Bigger theories are composed of smaller theories.
 - Theories are linked by interpretations.
 - Reasoning is distributed over the network.

Benefits of Little Theories

- Mathematics can be developed using the most appropriate vocabulary at the most appropriate level of abstraction.
- Emphasizes reuse: if A is a theorem of T , then A may be reused in any “instance” of T .
- Enables perspective switching.
- Enables parallel development.
- Inconsistency can be isolated: there are no interpretations of an inconsistent theory in a consistent theory, so inconsistency cannot spread from one theory to another.

Formalized Mathematics

- **Mathematics** is a process of creating, exploring, and connecting mathematical models.
- **Formalized mathematics** is the practical application of the axiomatic method within a formal logic.
 - The mathematics process is performed with the aid of **mechanized mathematics systems**.
 - Axiomatic theories are formally developed using:
 - * Theory creation.
 - * Conservative theory extension.
 - * Theory exploration.
 - * Theory interpretation.

Theory Creation

- Theories can be created in a several ways:
 - From scratch.
 - By forming a union of a set of theories.
 - By adding new vocabulary and axioms to a theory.
 - By instantiating a parameterized theory.
 - By instantiating a theory via an interpretation.
- A theory may be required to contain a **kernel theory** which includes the machinery common to all theories.

Conservative Theory Extension

- A conservative extension T' of T adds new machinery to T without compromising the original machinery of T .
- The **obligation** of a purported conservative extension is a formula that implies that the extension is conservative.
- Since T and T' are essentially the same theory, T' can be implemented by overwriting T .
 - Avoids a proliferation of closely related theories.
- There are two important kinds of conservative extensions that add new vocabulary to a theory:
 - Definitions.
 - Profiles.

Definitions

- A **definition** is a conservative extension that adds a new symbol s and a defining axiom $A(s)$ to a theory T .
 - In some logics, the defining axiom can have the form $s = D$ (where s does not occur in D).
- The obligation of the definition is
$$\exists ! x . A(x).$$
- The symbol s can usually be eliminated from any new expression of involving s .

Profiles

- A **profile** is a conservative extension that adds a set $\{s_1, \dots, s_n\}$ of symbols and a profiling axiom $A(s_1, \dots, s_n)$ to a theory T .

- The obligation of the profile is

$$\exists x_1, \dots, x_n . A(x_1, \dots, x_n).$$

- The symbols s_1, \dots, s_n cannot usually be eliminated from expressions involving s_1, \dots, s_n .
- Profiles can be used for introducing:
 - Underspecified objects.
 - Recursively defined functions.
 - Abstract datatypes.

Theory Exploration

- The logical consequences of a theory are explored by:
 - Proving conjectures.
 - Performing computations.
- Products of theory exploration:
 - Theorems.
 - Proofs.
 - Counterexamples.
 - Computations.
- Tools of theory exploration:
 - Theorems.
 - Transformers.

Theorems

- Facts about a theory are recorded as theorems.
- A theorem is usually installed in a theory only if it has been verified by a proof.
- A theorem may sometimes be installed without a proof:
 - A theorem verified by a decision procedure.
 - A theorem verified by a counterexample.
 - A theorem imported via an interpretation.
 - A theorem shown by a metatheorem.

Transformers

- A **transformer** is a function that maps the expressions of a language L to the expressions of a language L' .
 - Usually, $L \leq L'$, $L' \leq L$, or $L = L'$.
- A transformer can be used to represent an expression transforming operation such as an evaluator, a simplifier, a rewrite rule, a rule of inference, a decision procedure, or an interpretation of one language in another.
- Sound transformers can be:
 - Generated from theorems (e.g., theorem macetes).
 - Constructed from other transformers using certain constructors (e.g., compound macetes).
 - Obtained by instantiating abstract transformers (e.g., algebraic and order processors).
 - Manually defined and verified.

Interpretations

- Theory interpretations can be used to:
 - Transport theorems, definitions, and profiles.
 - Instantiate theories.
 - Compare the strength of theories.
 - Show relative consistency of theories.
 - Show theory extension conservativity.
- Logic interpretations can be used to interpret a theory in one logic in a theory of another logic.