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What is the Axiomatic Method?

1. A mathematical model is expressed as a set of axioms (in

a language) called an axiomatic theory.

2. New concepts are introduced by making definitions.

3. Assertions about the model are stated as theorems and

proved from the axioms.

Notes:

• The axiomatic method is a method of presentation, not

a method of discovery (Lakatos).

• The axiomatic method can be used as a method of

organization.
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History

• Euclid (325–265 BC) used the axiomatic method to present
the mathematics known in his time in the Elements.

– The axioms were considered truths.

• The development of noneuclidean geometry by Bolyai,
Gauss, and Lobachevskii (early 1800s) showed that
axioms may be considered as just assumptions.

• Whitehead and Russell formalized a major portion of
mathematics in the Principia Mathematica (1910–1913).

• Bourbaki (mid 1900s) used the axiomatic method to
codify mathematics in the 30 volume Eléments de
mathématique.

• Several libraries of formalized mathematics have been
developed since the late 1980s using interactive
theorem provers: HOL, IMPS, Isabelle, Mizar, Nqthm,
Nuprl, PVS.
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Axiomatic Theories

• Theory = formal language + set of axioms.

• Language: vocabulary for objects and their properties.

– Has a precise semantics (with a notion of logical

consequence).

– Can be used to describe multiple situations.

– The language usually belongs to a logic.

• Axioms: assumptions about the objects and properties.

– Specify a class of models.

– Basis for proving theorems.
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Example: Theory of Partial Order

• Language: A language of first-order logic language with

a binary predicate symbol ≤.

– a ≤ b is intended to mean a is less than or equal to b.

• Axioms:

– Reflexivity. ∀x . x ≤ x.

– Transitivity. ∀x, y, z . (x ≤ y ∧ y ≤ z) ⇒ x ≤ z.

– Antisymmetry. ∀x, y . (x ≤ y ∧ y ≤ x) ⇒ x = y.

• The theory has infinitely many nonisomorphic models.
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Example: Peano Arithmetic

• Language: A language of second-order logic with a

constant symbol 0 and unary function symbol S.

– 0 is intended to represent the number zero.

– S is intended to represent the successor function, i.e.,

S(a) means a + 1.

• Axioms:

– 0 has no predecessor. ∀x . ¬(0 = S(x)).

– S is injective. ∀x, y . S(x) = S(y) ⇒ x = y.

– Induction principle.

∀P . (P (0) ∧ ∀x . P (x) ⇒ P (S(x))) ⇒ ∀x . P (x).

• Second-order Peano arithmetic is categorical, i.e, it has

exactly one model up to isomorphism.
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Benefits of Axiomatic Theories

• Conceptual clarity: inessential details are omitted.

• Generality: theorems hold in all models.

• Dual purpose: a theory can be viewed as:

– An abstract mathematical model.

– A specification of a collection of mathematical models.
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Theory Interpretations

• A translation Φ from T to T ′ is a function that maps

the primitive symbols of T to expressions of T ′ satisfying

certain syntactic conditions.

• Φ determines:

– A mapping of expressions of T to expressions of T ′.

– Set of sentences called obligations.

• Φ is an interpretation if it maps the theorems of T to

theorems of T ′.

– Sufficient condition: the obligations of Φ are

theorems of T ′.

• Interpretations are information conduits!
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Example: Theory of Computer Networks

• Theory name: Networks.

• Language: A language of many-sorted first-order logic

with the following sorts and function symbols:

Sorts Function symbols

boxes box-of-interface
wires wire-of-interface
interfaces address-of-interface
addresses

• Example axioms:

– “Every box has a unique loopback interface”.

– “The address of a loopback interface is 127.0.0.1”.
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Example: Theory of Bipartite Graphs

• Theory name: Bipartite Graphs.

• Language: A language of many-sorted first-order logic

with the following sorts and function symbols:

Sorts Operators

red-nodes red-node-of-edge
blue-nodes blue-node-of-edge
edges

• No explicit axioms.
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Example: Bipartite Graphs to Networks

• Let ΦBG→N be the translation from Bipartite Graphs

to Networks defined by:

red-nodes 7→ boxes.

blue-nodes 7→ wires.

edges 7→ interfaces.

red-node-of-edge 7→ box-of-interface.

blue-node-of-edge 7→ wire-of-interface.

• ΦBG→N has no obligations.

• ΦBG→N is an interpretation.

– “Transitivity of red-to-red connectivity” maps to

“transitivity of box-to-box connectivity”.
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Example: Symmetry Interpretation

• Let ΦBG→BG be the translation from Bipartite Graphs

to Bipartite Graphs defined by:

red-nodes 7→ blue-nodes.

blue-nodes 7→ red-nodes.

edges 7→ edges.

red-node-of-edge 7→ blue-node-of-edge.

blue-node-of-edge 7→ red-node-of-edge.

• ΦBG→BG has no obligations.

• ΦBG→BG is an interpretation.

– “Transitivity of red to red connectivity” maps to

“transitivity of blue to blue connectivity”.
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Two Versions of the Axiomatic Method

1. Big Theory: A body of mathematics is entirely

represented in one theory.

• Often a powerful, highly expressive theory like set

theory is selected.

• All reasoning is performed within this single theory.

2. Little Theories: A body of mathematics is represented

as a network of theories.

• Bigger theories are composed of smaller theories.

• Theories are linked by interpretations.

• Reasoning is distributed over the network.
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Benefits of Little Theories

• Mathematics can be developed using the most

appropriate vocabulary at the most appropriate

level of abstraction.

• Emphasizes reuse: if A is a theorem of T ,

then A may be reused in any “instance” of T .

• Enables perspective switching.

• Enables parallel development.

• Inconsistency can be isolated: there are no interpreta-

tions of an inconsistent theory in a consistent theory, so

inconsistency cannot spread from one theory to another.
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Formalized Mathematics

• Mathematics is a process of creating, exploring, and

connecting mathematical models.

• Formalized mathematics is the practical application of

the axiomatic method within a formal logic.

– The mathematics process is performed with the aid of

mechanized mathematics systems.

– Axiomatic theories are formally developed using:

∗ Theory creation.

∗ Conservative theory extension.

∗ Theory exploration.

∗ Theory interpretation.
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Theory Creation

• Theories can be created in a several ways:

– From scratch.

– By forming a union of a set of theories.

– By adding new vocabulary and axioms to a theory.

– By instantiating a parameterized theory.

– By instantiating a theory via an interpretation.

• A theory may be required to contain a kernel theory

which includes the machinery common to all theories.
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Conservative Theory Extension

• A conservative extension T ′ of T adds new machinery to

T without compromising the original machinery of T .

• The obligation of a purported conservative extension is

a formula that implies that the extension is conservative.

• Since T and T ′ are essentially the same theory, T ′ can be

implemented by overwriting T .

– Avoids a proliferation of closely related theories.

• There are two important kinds of conservative extensions

that add new vocabulary to a theory:

– Definitions.

– Profiles.
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Definitions

• A definition is a conservative extension that adds a new

symbol s and a defining axiom A(s) to a theory T .

– In some logics, the defining axiom can have the form

s = D (where s does not occur in D).

• The obligation of the definition is

∃ !x . A(x).

• The symbol s can usually be eliminated from any new

expression of involving s.
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Profiles

• A profile is a conservative extension that adds a set

{s1, . . . , sn} of symbols and a profiling axiom A(s1, . . . , sn)

to a theory T .

• The obligation of the profile is

∃x1, . . . , xn . A(x1, . . . , xn).

• The symbols s1, . . . , sn cannot usually be eliminated from

expressions involving s1, . . . , sn.

• Profiles can be used for introducing:

– Underspecified objects.

– Recursively defined functions.

– Abstract datatypes.
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Theory Exploration

• The logical consequences of a theory are explored by:

– Proving conjectures.

– Performing computations.

• Products of theory exploration:

– Theorems.

– Proofs.

– Counterexamples.

– Computations.

• Tools of theory exploration:

– Theorems.

– Transformers.
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Theorems

• Facts about a theory are recorded as theorems.

• A theorem is usually installed in a theory only if it has

been verified by a proof.

• A theorem may sometimes be installed without a proof:

– A theorem verified by a decision procedure.

– A theorem verified by a counterexample.

– A theorem imported via an interpretation.

– A theorem shown by a metatheorem.
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Transformers

• A transformer is a function that maps the expressions

of a language L to the expressions of a language L′.

– Usually, L ≤ L′, L′ ≤ L, or L = L′.

• A transformer can be used to represent an expression

transforming operation such as an evaluator, a simplifier,

a rewrite rule, a rule of inference, a decision procedure,

or an interpretation of one language in another.

• Sound transformers can be:

– Generated from theorems (e.g., theorem macetes).

– Constructed from other transformers using certain

constructors (e.g., compound macetes).

– Obtained by instantiating abstract transformers

(e.g., algebraic and order processors).

– Manually defined and verified.
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Interpretations

• Theory interpretations can be used to:

– Transport theorems, definitions, and profiles.

– Instantiate theories.

– Compare the strength of theories.

– Show relative consistency of theories.

– Show theory extension conservativity.

• Logic interpretations can be used to interpret a theory in

one logic in a theory of another logic.
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