

CAS 701 Fall 2005

02 Propositional Logic

Instructor: W. M. Farmer

Revised: 25 September 2005

What is Propositional Logic?

- **Propositional logic** is the study of the truth or falsehood of **propositions** or **sentences** constructed using truth-functional **connectives**.
 - Also called **sentential logic**.
 - Began with the work of the Stoic philosophers, particularly Chrysippus, in the late 3rd century BCE.
- Most other logics are extensions of propositional logic.
- Applications:
 - Logical arguments.
 - Logical circuits (e.g., electronic circuits).
 - Boolean constraint modeling.

Syntax

- A **language** of proposition logic is a pair $L = (\mathcal{A}, \mathcal{B})$ where:
 - \mathcal{A} is a set of constants called **propositional symbols** or **propositional letters**.
 - \mathcal{B} is a set of 0-ary, unary, and binary constructors called **propositional connectives**.
- A **formula** of L is a string of symbols inductively defined by the following formation rules:
 1. Each $p \in \mathcal{A}$ is a formula of L .
 2. If $C_0, C_1, C_2 \in \mathcal{B}$ are 0-ary, unary, and binary, respectively, and A_1, A_2 are formulas of L , then C_0 , $(C_1 A_1)$, and $(A_1 C_2 A_2)$ are formulas of L .
- Common propositional connectives: \top, \perp (0-ary); \neg (unary); $\wedge, \vee, \Rightarrow, \Leftrightarrow, \mid$ (binary).

An Example Language

- Let $L_0 = (\mathcal{A}, \mathcal{B})$ be the propositional language where:

$$\mathcal{A} = \{p_0, p_1, p_2, \dots\}.$$

$$\mathcal{B} = \{\neg, \Rightarrow\}.$$

- The following abbreviations are employed:

\top denotes $(p_0 \Rightarrow p_0)$.

\mathbf{F} denotes $(\neg \top)$.

$(A \vee B)$ denotes $((\neg A) \Rightarrow B)$.

$(A \wedge B)$ denotes $(\neg((\neg A) \vee (\neg B)))$.

$(A \Leftrightarrow B)$ denotes $((A \Rightarrow B) \wedge (B \Rightarrow A))$.

$(A \mid B)$ denotes $(\neg(A \wedge B))$.

Meaning of Propositional Connectives

- Each n -ary propositional connective denotes an assigned n -ary truth function.
- Examples:

T	p	$(\neg p)$	p	q	$(p \wedge q)$	p	q	$(p \vee q)$
t	t	f	t	t	t	t	t	t
	f	t	t	f	f	t	f	t
F			f	t	f	f	t	t
f			f	f	f	f	f	f

p	q	$(p \Rightarrow q)$	p	q	$(p \Leftrightarrow q)$	p	q	$(p \mid q)$
t	t	t	t	t	t	t	t	f
t	f	f	t	f	f	t	f	t
f	t	t	f	t	f	f	t	t
f	f	t	f	f	t	f	f	t

- A set \mathcal{C} of proposition connectives is **complete** if every truth function can be represented by a formula using only members of \mathcal{C} . For example, $\{\neg, \Rightarrow\}$ and $\{\mid\}$ are complete.

Semantics

- Let $L = (\mathcal{A}, \mathcal{B})$ be a language of propositional logic, and for each $C \in \mathcal{B}$, let f_C be its assigned truth function.
- A **model** for L is an (interpretation) function I that assigns a truth value in $\{t, f\}$ to each $p \in \mathcal{A}$.
- The **valuation function** for I is the function V that maps formulas of L to $\{t, f\}$ and satisfies the following conditions:
 1. If $p \in \mathcal{A}$, then $V(p) = I(p)$.
 2. If $C \in \mathcal{B}$ is 0-ary, then $V(C) = f_C$.
 3. If $C \in \mathcal{B}$ is unary and A is a formula of L , then $V((C A)) = f_C(V(A))$.
 4. If $C \in \mathcal{B}$ is binary and A, B are formulas of L , then $V((A C B)) = f_C(V(A), V(B))$.

Truth Tables

- Truth tables can be used to analyze the meaning of propositional formulas.
- Example (**Rule of Contraposition**):

p	q	$((p \Rightarrow q) \Leftrightarrow ((\neg q) \Rightarrow (\neg p)))$					
t	t	t	t	f	t	f	t
t	f	f	t	t	f	f	t
f	t	t	t	f	t	t	t
f	f	t	t	t	t	t	t

- A propositional formula A is a **tautology** and is **valid** if all of the final entries in the truth table for A are t.
- A propositional formula A is **satisfiable** if some of the final entries in the truth table for A are t.
- The validity of propositional formulas can be decided with truth tables—hence propositional logic is **decidable!**

Laws of Propositional Logic

- The **laws of propositional logic** are fundamental laws of most other common logics.
- Examples:
 - Law of Double Negation.
 - Law of Excluded Middle.
 - Law of Contraposition.
 - De Morgan's Laws.
 - Associative, commutative, and distributive laws.
 - Idempotent, identity, domination, and absorption laws.

A Hilbert-Style Proof System

Let \mathbf{H} be the following Hilbert-style proof system for L_0 :

- The **logical axioms** of \mathbf{H} are all formulas of L_0 that are instances of the following three schemas:
 - A1:** $(A \Rightarrow (B \Rightarrow A))$.
 - A2:** $((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$.
 - A3:** $((\neg A \Rightarrow \neg B) \Rightarrow (B \Rightarrow A))$.
- The single **rule of inference** of \mathbf{H} is **modus ponens**:
 - MP:** From A and $(A \Rightarrow B)$, infer B .

Metatheorems of Propositional Logic

- **Deduction Theorem.** $\Sigma \cup \{A\} \vdash_{\mathbf{H}} B$ implies $\Sigma \vdash_{\mathbf{H}} A \Rightarrow B$.
- **Soundness Theorem.** $\Sigma \vdash_{\mathbf{H}} A$ implies $\Sigma \models A$.
- **Completeness Theorem.** $\Sigma \models A$ implies $\Sigma \vdash_{\mathbf{H}} A$.
- **Soundness and Completeness Theorem (second form).** Σ is consistent in \mathbf{H} iff Σ is satisfiable.
- **Compactness Theorem.** If Σ is finitely satisfiable, then Σ is satisfiable.