

CAS 701 Fall 2005

03 Numbers, Sets, Functions, And Relations

Instructor: W. M. Farmer

Revised: 23 October 2005

Number Systems

- \mathbb{N} , the natural numbers.
- \mathbb{O} , the ordinal numbers.
- \mathbb{Z} , the integers.
- \mathbb{Z}_n , the integers modulo n .
- \mathbb{Q} , the rational numbers.
- \mathbb{R} , the real numbers.
- \mathbb{H} , the hyperreal numbers.
- \mathbb{S} , the surreal numbers.
- \mathbb{C} , the complex numbers.

Foundational Mathematical Objects

- The three most common kinds of foundational objects:
 1. Sets.
 2. Functions.
 3. Relations.
- Each kind of object can be used to represent the other two kinds of objects.

Sets

- A **set** is a collection of objects.
- Some very large collections of objects cannot be sets.
 - For example, consider the the **Russell set**, the set of all sets that do not contain themselves.
 - A collection that is too large to be a set is called a **proper class**.
- Styles of set theories:
 - Naive set theory.
 - A universal set.
 - No universal set (e.g., **ZF set theory**).
 - A universal class (e.g., **NBG set theory**).

Set Concepts

- Basic properties: membership, subset, cardinality.
- Basic operations:
 - Union, intersection, complement, difference, symmetric-difference.
 - Cartesian product (product), disjoint union (sum).
 - Power set.
- Special sets: the emptyset, universal sets, functions, relations, ordinals, cardinals.
- Functions and relations can be represented as special kinds of sets (e.g., as sets of **tuples**).

Functions

- There are two definitions of a function:
 1. A **function** is a rule $f : I \rightarrow O$ that associates members of I (inputs) with members of O (outputs).
 - Every input is associated with at most one output.
 - Some inputs may not be associated with an output.
Example: $f : \mathbf{Z} \rightarrow \mathbf{Q}$ where $x \mapsto 1/x$.
 2. A **function** is a set $F \subseteq I \times O$ such that if $(x, y), (x, y') \in F$, then $y = y'$.
- Each function f has a **domain** $D \subseteq I$ and a **range** $R \subseteq O$.
- A set or relation can be represented as a special kind of function (e.g., as a **predicate**, a **characteristic function**, or an **indicator**).

Function Concepts

- Basic properties:
 - arity (0, 1, $n \geq 2$, multiary).
 - total, injective, surjective, bijective.
 - image, inverse image.
- Basic operations: composition, restriction, inverse
- Special functions: the empty function, identity functions, choice functions

Cardinality

- Two sets A and B are **equipollent**, written $A \approx B$, if there is a bijection $f : A \rightarrow B$ between them.
- $A \preceq B$ means $A \approx B'$ for some $B' \subseteq B$.
- A set is **infinite** if it is equipollent with a proper subset of itself.
- The **cardinality** of a set A is the cardinal number c such that A and c are equipollent.
- **Theorem.**
 1. $\mathbb{N} \approx \mathbb{Q}$.
 2. **(Cantor)** $\mathbb{N} \not\approx \mathbb{R}$.
- **Theorem (Schröder-Bernstein).** If $A \preceq B$ and $B \preceq A$, then $A \approx B$.

Relations

- An n -ary **relation** is a set $R \subseteq A_1 \times \cdots \times A_n$ ($n \geq 1$).
 - Any set can be considered as a unary relation.
 - Any nonunary relation can be considered as a binary relation.
- Functions are considered as special relations.
 - An n -ary function $f : A_1 \times \cdots \times A_n \rightarrow B$ is identified with the corresponding $(n + 1)$ -ary relation $R_f \subseteq A_1 \times \cdots \times A_n \times B$ called the **graph** of the function.
- An n -ary relation can be represented by an n -ary predicate.

Relation Concepts

- Basic relation properties:
 - Reflexive, symmetric, transitive.
- Basic relation operations:
 - Domain, range.
 - Composition, inverse.
- Special relations: the empty relation, universal relations, equivalence relations.
- Ways of representing relations:
 - Using zero-one matrices.
 - Using directed graphs.

Closures of Relations

- Reflexive closure.
- Symmetric closure.
- Transitive closure.
 - Equals the connectivity relation.

Equivalence Relations

- A relation on a set is an **equivalence relation** if it is reflexive, symmetric, and transitive.

- Given an equivalence relation R on a set S , the **equivalence class** of $a \in S$ is the set

$$\{b \in S \mid a R b\}.$$

- **Theorem.**
 1. The equivalence classes of an equivalence relation on a set S form a partition of S .
 2. Given a partition of a set S , there is an equivalence relation on S whose equivalence classes are the members of the partition.

Orderings

- A **pre-order** is a relation R on a set that is reflexive and transitive.
- A **weak partial order** is a relation \leq on a set that is reflexive, antisymmetric, and transitive.
- A **strict partial order** is a relation $<$ on a set that is irreflexive, asymmetric, and transitive.
- A **weak total order** is a relation \leq on a set that is antisymmetric, transitive, and total.
- A **strict total order** is a strict partial order $<$ that satisfies the trichotomy law.
- A **well order** is a total order such that every nonempty set of elements contains a least element with respect to the ordering.

Algebras

- A **mathematical structure** is a structured collection of sets, functions, and relations.
- An **algebra** is a mathematical structure consisting of:
 1. A set of elements called the **domain**.
 2. A set of distinguished elements, functions, and relations called the **signature** that impose a structure on the domain of elements.
- The signature usually determines a **language** for describing and making assertions about the elements of the domain.
- Algebras are often described by tuples of the form $(D, e_1, \dots, e_k, f_1, \dots, f_m, r_1, \dots, r_n)$.

Examples of Algebras

- Number systems (e.g, natural, ordinal, integer, rational, real, hyperreal, surreal, complex).
- Algebraic structures (e.g, monoids, groups, rings, fields).
- Orders (e.g., pre, partial, total, well).
- Lattices and boolean algebras.
- Graphs and trees.
- Abstract data types (ADTs) used in Computer Science (e.g, ADTs for strings, lists, streams, arrays, records, stacks, queues).