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What is First-Order Logic?

• First-order logic is the study of statements about
individuals using functions, predicates, and quantification.

– First-order logic is also called first-order predicate
logic and first-order quantificational logic.

• First-order logic is propositional logic plus:

– Terms that denote individuals.

– Predicates that are applied to terms.

– Quantifiers applied to individual variables.

• First-order logic is “first-order” because quantification is
over individuals but not over higher-order objects such as
functions and predicates.

• There are many versions of first-order logic.

• We will define and employ a version of first-order logic
named FOL.

2



Syntax of FOL: Languages

• Let V be a fixed infinite set of symbols called variables.

• A language of FOL is a triple L = (C,F ,P) where:

– C is a set of symbols called individual constants.

– F is a set of symbols called function symbols, each

with an assigned arity ≥ 1.

– P is a set of symbols called predicate symbols, each

with an assigned arity ≥ 1. P contains the binary

predicate symbol =.

– V, C, F, and P are pairwise disjoint.
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Syntax of FOL: Terms and Formulas

• Let L = (C,F ,P) be a language of FOL.

• A term of L is a string of symbols inductively defined by
the following formation rules:

– Each x ∈ V and a ∈ C is a term of L.

– If f ∈ F is n-ary and t1, . . . , tn are terms of L, then
f(t1, . . . , tn) is a term of L.

• A formula of L is a string of symbols inductively defined
by the following formation rules:

– If p ∈ P is n-ary and t1, . . . , tn are terms of L, then
p(t1, . . . , tn) is a formula of L.

– If A and B are formulas of L and x ∈ V, then (¬A) and
(A ⇒ B), and (∀x . A) are formulas of L.

• =, ¬, ⇒, and ∀ are the logical constants of FOL.
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Syntax of FOL: Abbreviations

(s = t) denotes = (s, t).
(s 6= t) denotes (¬(s = t)).
T denotes (∀x . (x = x)).
F denotes (¬(T)).
(A ∨B) denotes ((¬A) ⇒ B).
(A ∧B) denotes (¬((¬A) ∨ (¬B))).
(A ⇔ B) denotes ((A ⇒ B) ∧ (B ⇒ A)).
(∃x . A) denotes (¬(∀x . (¬A)).
(2 x1, . . . , xn . A) denotes (2 x1 . (2 x2, . . . , xn . A))

where n ≥ 2 and 2 ∈ {∀, ∃}.
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Free and Bound Variables

• The scope of a quantifier ∀x or ∃x in a formula ∀x . B

or ∃x . B, respectively, is the part of B that is not in a

subformula of B of the form ∀x . C or ∃x . C.

• An occurrence of a variable x in a formula A is free if it

is not in the scope of a quantifier ∀x or ∃x; otherwise

the occurrence of x in A is bound.

– An occurrence of a variable in a formula is either free

or bound but never both.

– A variable can be both bound and free in a formula.

• A formula is closed if it contains no free variables.

• A sentence is a closed formula.
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Substitution

• Let x be a variable, t a term, and A a formula.

• The substitution of t for x in A, written

A[t/x] or A[x 7→ t],

is the result of replacing each free occurrence of x in A

with t.

• Suppose A is ∀ y . x = y and t is f(y). Then the
substitution A[t/x] is said to capture y.

– Variable captures often produce unsound results.

• t is free for x in A if no free occurrence of x in A is in
the scope of ∀ y or ∃ y for any variable y occurring t.

– Hence, t is free for x in A if the substitution A[t/x]
does not result in any variable captures.
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Semantics of FOL: Models

• A model for a language L = (C,F ,P) of FOL is a pair

M = (D, I) where D is a nonempty domain (set) and I is

a total function on C ∪ F ∪ P such that:

– If a ∈ C, I(a) ∈ D.

– If f ∈ F is n-ary, I(f) : Dn → D and I(f) is total.

– If p ∈ P is n-ary, I(p) : Dn → {t, f} and I(p) is total.

– I(=) is idD, the identity predicate on D.

• A variable assignment into M is a function that maps

each x ∈ V to an element of D.

• Given a variable assignment ϕ into M , x ∈ V, and d ∈ D,

let ϕ[x 7→ d] be the variable assignment ϕ′ into M such

ϕ′(x) = d and ϕ′(y) = ϕ(y) for all y 6= x.
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Semantics of FOL: Valuation Function

The valuation function for a model M for a language L =
(C,F ,P) of FOL is the binary function V M that satisfies the
following conditions for all variable assignments ϕ into M and
all terms t and formulas A of L:

1. Let t ∈ V. Then V M
ϕ (t) = ϕ(t).

2. Let t ∈ C. Then V M
ϕ (t) = I(t).

3. Let t = f(t1, . . . , tn). Then V M
ϕ (t) = I(f)(V M

ϕ (t1), . . . , V
M
ϕ (tn)).

4. Let A = p(t1, . . . , tn). Then V M
ϕ (A) = I(p)(V M

ϕ (t1), . . . , V
M
ϕ (tn)).

5. Let A = (¬A′). If V M
ϕ (A′) = f, then V M

ϕ (A) = t;
otherwise V M

ϕ (A) = f.

6. Let A = (A1 ⇒ A2). If V M
ϕ (A1) = t and V M

ϕ (A2) = f,
then V M

ϕ (A) = f; otherwise V M
ϕ (A) = t.

7. Let A = (∀x . A′). If V M
ϕ[x 7→d](A

′) = t for all d ∈ D, then

V M
ϕ (A) = t; otherwise V M

ϕ (A) = f.
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Metatheorems of FOL

• Completeness Theorem (Gödel 1930). There is a

sound and complete proof system for FOL.

• Compactness Theorem. Let Σ be a set of formulas of

a language of FOL. If Σ is finitely satisfiable, then Σ is

satisfiable.

• Undecidability Theorem (Church 1936). First-order

logic is undecidable. That is, for some language L of

FOL, the problem of whether or not a given formula of

L is valid is undecidable.
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A Hilbert-Style Proof System (1)

Let H be the following Hilbert-style proof system for a

language L of FOL:

• The logical axioms of H are all formulas of L that are

instances of the following schemas:

– For propositional logic:

A1: A ⇒ (B ⇒ A).

A2: (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C)).

A3: (¬A ⇒ ¬B) ⇒ (B ⇒ A).

– For quantification:

A4: (∀x . (A ⇒ B)) ⇒ (A ⇒ (∀x . B))

provided x is not free in A.

A5: (∀x . A) ⇒ A[x 7→ t]

provided t is free for x in A.
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A Hilbert-Style Proof System (2)

– For equality:

A6: ∀x . x = x.

A7: ∀x, y . x = y ⇒ y = x.

A8: ∀x, y, z . (x = y ∧ y = z) ⇒ x = z.

A9: ∀x1, . . . , xn, y1, . . . , yn . (x1 = y1 ∧ · · · ∧ xn = yn)

⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

where f ∈ F is n-ary.

A10: ∀x1, . . . , xn, y1, . . . , yn . (x1 = y1 ∧ · · · ∧ xn = yn)

⇒ (p(x1, . . . , xn) ⇔ p(y1, . . . , yn))

where p ∈ P is n-ary.

• The rules of inference of H are:

MP: From A and (A ⇒ B), infer B.

GEN: From A, infer (∀x . A), for any x ∈ V.
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More Metatheorems of FOL

• Deduction Theorem. Σ ∪ {A} `H B implies

Σ `H A ⇒ B.

• Soundness Theorem. Σ `H A implies Σ |= A.

• Completeness Theorem. Σ |= A implies Σ `H A.

• Soundness and Completeness Theorem (second form).

Σ is consistent in H iff Σ is satisfiable.
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Theories

• A theory in FOL is a pair T = (L,Γ) where L is a

language of FOL and Γ is a set of sentences of L.

• Examples:

– Theories of partial and total orders.

– Theories of monoids and groups.

– Presburger arithmetic.

– First-order Peano arithmetic.

– Theory of real closed fields.
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Algebras as Models

• If L = (C,F ,P) is a finite language of FOL, we may

present the language as

L = (c1, . . . , ck, f1, . . . , fm, p1, . . . , pn)

where C = {c1, . . . , ck}, F = {f1, . . . , fm}, and

P = {p1, . . . , pn}.

• An algebra

(D, d1, . . . , dk, g1, . . . , gm, q1, . . . .qn)

can then be considered a model for L if M = (D, I) is a

model for L where I(ci) = di for 1 ≤ i ≤ k, I(fi) = gi for

1 ≤ i ≤ m, and I(pi) = qi for 1 ≤ i ≤ n.
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Example: Peano Arithmetic

• Language: A language of second-order logic with an

individual constant symbol 0 and unary function

symbol S.

– 0 is intended to represent the number zero.

– S is intended to represent the successor function, i.e.,

S(a) means a + 1.

• Axioms:

– 0 has no predecessor. ∀x . ¬(0 = S(x)).

– S is injective. ∀x, y . S(x) = S(y) ⇒ x = y.

– Induction principle.

∀P . (P (0) ∧ ∀x . P (x) ⇒ P (S(x))) ⇒ ∀x . P (x).

• Second-order Peano arithmetic is categorical, i.e, it has

exactly one model up to isomorphism.
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Language and Theory Extensions

• Let Li = (Ci,F i,Pi) be a language of FOL and let Ti =

(Li,Γi) be a theory of FOL for i = 1,2.

• L1 is a sublanguage of L2, and L2 is a super language or

an extension of L1, written L1 ≤ L2, if C1 ⊆ C2, F1 ⊆ F2,

and P1 ⊆ P2.

• T1 is a subtheory of T2, and T2 is a super theory or an

extension of T1, written T1 ≤ T2, if L1 ≤ L2 and Γ1 ⊆ Γ2.
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Conservative Theory Extension

• Let T = (L,Γ) and T ′ = (L′,Γ′) be theories of FOL.

• T ′ is a conservative extension of T if T ≤ T ′ and, for

every formula A of L, T ′ |= A implies T |= A.

– A conservative extension of a theory adds new

machinery to the theory without compromising the

theory’s original machinery.

• The obligation of a purported conservative extension is

a formula that implies that the extension is conservative.

• There are two important kinds of conservative extensions

that add new vocabulary to a theory:

1. Definitions.

2. Profiles.
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Definitions

• A definition is a conservative extension that adds a new

symbol s and a defining axiom A(s) to a theory T .

– In some logics, the defining axiom can have the form

s = D (where s does not occur in D).

• The obligation of the definition is

∃ !x . A(x).

• The symbol s can usually be eliminated from any new

expression of involving s.
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Profiles

• A profile is a conservative extension that adds a set

{s1, . . . , sn} of symbols and a profiling axiom A(s1, . . . , sn)

to a theory T .

• The obligation of the profile is

∃x1, . . . , xn . A(x1, . . . , xn).

• The symbols s1, . . . , sn cannot usually be eliminated from

expressions involving s1, . . . , sn.

• Profiles can be used for introducing:

– Underspecified objects.

– Recursively defined functions.

– Algebras.
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