CAS 701 Fall 2005

05 Recursion and Induction

Instructor: W. M. Farmer

Revised: 7 October 2005

What is Recursion?

e Recursion is a method of defining a structure or
operation in terms of itself.

— One of the most fundamental ideas of computing.

— Can make some specifications, descriptions, and
programs easier to express and prove correct.

e Induction is a method of proof based on a recursively
defined structure.

— The recursively defined structure and the proof method
are specified by an induction principle (sometimes
called a structural induction principle).

— Induction is especially useful for proving properties about
recursively defined operations.

e The terms “recursion” and “induction” are often used
interchangeably.

Example: Natural Numbers

e Recursive definition of N:

1. O € N.

2. If ne€ N, then S(n) € N.

3. The members of N are distinct (no confusion).
4. N is the smallest such set (no junk).

e Induction principle for N:

VP:N — x,
[P(O)A(Vx:N.P(x) = P(S5(x)))]
=
Ve :N.P(x)

e [his induction principle is also called mathematical
induction.

Example: Stacks of Natural Numbers

e Recursive definition of Stack:

1.
2. If n € N and s € Stack, then Push(n,s) € Stack.
3.

4. Stack is the smallest such set (no junk).

Bottom & Stack.

The members of Stack are distinct (no confusion).

e Induction principle for Stack:

VP :Stack — x.
[P(Bottom) A
(Vs :Stack . P(s) = (Vn: N. P(Push(n,s)))]
=
Vs : Stack . P(s)

Recursive Function Definitions

e Recursion is extremely useful for defining functions.

— Can facilitate both reasoning and computation.

e A faulty recursive definition may lead to inconsistencies.

— Example: Vn:N. f(n) = f(n) + 1.

e [here are several schemes for defining functions by
recursion.

Recursive Definition Schemes
e Each scheme has a set of instance requirements.

e A scheme is proper if every instance of the scheme
actually defines a function.

e The domain of a scheme is the set of functions f such
that f is definable by some instance of the scheme.

e Designers of mechanized mathematics systems prefer
schemes which:

— Are proper.
— Have easily checked instance requirements.
— Have a large domain of useful functions.

The Primitive Recursive Functions (1)

e [he class P of primitive recursive functions is the
smallest set of f : N X --- Xx N — N closed under the
following rules:

1. Successor Function (Az:N.x+1) e P.

2. Constant Functions Each (Az1,...,zn, : N.m) €P
where 0 < m, n.

3. Projection Functions Each (Az1,...,z,:N.x;) € P
where 1 <n and 1 << n.

4. Composition If g1,...,g9m,h € P, then f € P where:

Vxi,...,zn N.
flx1,...,2n) = h(g1(x1,...,20n), ..., gm(x1,...,20)).

5. Primitive Recursion If g,h € P, then f € P where:

Vao,...,zn - N . f(O,22,...,2n) = g(x2,...,2p).
Vxi,...,zn : N.
fle1+1,20,...,2n) = h(x1, f(x1,22,...,20),T2,...,Tn).

7

The Primitive Recursive Functions (2)

e Example. The factorial function f : N — N is defined
by:

1. f(0) =g9(0) =1.
2. f(n+1) =h(n, f(n)) where h(z,y) =yx*(x+1).

e [he primitive recursion scheme is proper.

e P is a very large, but proper, subset of the computable
total functions on N.

— P contains almost all functions on N commonly found
in mathematics.

e T heorem. There exists a computable total function
f N — N such that f & P.

Proof. Construct f by diagonalization.

Well-Founded Relations

e A relation RC A x A is well-founded, if for all nonempty
B C A, there is some a € B such that, for all b € B, —bRa.

— a IS called an R-least element of B.

e Proposition. If R is a strict total order, then R is well-
founded iff R is a well-order.

Well-Founded Recursion

e A tuple (T, f,D, R) where
— T is a theory,
— f.:A— A,
— D is a definition of the form

Va . f(z) = E(f(a1(x)),. .., f(ar(x))), and

— R is a well-founded relation on A

defines f to be a total function in T by well-founded
recursion if T =Vx . a;(x) R x for each i with 1 <i <k.

e Example. (P, f,D, <) where

— P is first-order Peano arithmetic,

— f:N — N,

— DisVn. f(n) =if(n=0,1,f(n—1)*n), and
— < is the usual order on N

defines the factorial function in P.

10

Monotone Functionals

e A functional is an expression of type o — o where
=01 X - Xop — Qyt1.

e Subfunction: Vg,h:a.gLlah &
V1 :a1, ..., 2n: an.g(x1,...,2n)]
= g(x1,...,2zn) = h(x1,...,20).

e Monotone: VF :a— a.monotoney(F) &
Vg,h:a.glah= F(g) Ca F(h).

e Fixed Point Theorem. Every monotone functional has
a least fixed point.

Proof: F7(/A,) must be a fixed point for some ordinal
v, where A, is the empty function of type «a.

11

Monotone Functional Recursion

e A recursive definition via a monotone functional is a
triple R = (T, f, F) where:
— T = (L,IN) is a theory (in a higher-order logic that
admits partial functions).
— f is a constant of type a which is not a member of L.

— F'is a functional of type a — a which is monotone in
T.

e T he defining axiom of R is A which says
“f is a least fixed point of F".

e [he definitional extension resulting from R is the
theory (LU {f},T U{A}).

12

Examples

e Empty function: \Nf:Z—~Z . n:Z. f(n).

e Empty function: \Nf:Z—~Z . n:Z.f(n)+1.

e Factorial: A\f:N—N . An:N.if(n=0,1,f(n—1)*n).

e SUM: No:ZxZx(Z—R)—-R.
Amn Z,f:Z—R.if(lm<n,oc(mn-—1,f)4+ f(n),0).

13

