

CAS 701 Fall 2005

05 Recursion and Induction

Instructor: W. M. Farmer

Revised: 7 October 2005

What is Recursion?

- **Recursion** is a method of defining a structure or operation in terms of itself.
 - One of the most fundamental ideas of computing.
 - Can make some specifications, descriptions, and programs easier to express and prove correct.
- **Induction** is a method of proof based on a recursively defined structure.
 - The recursively defined structure and the proof method are specified by an **induction principle** (sometimes called a **structural induction principle**).
 - Induction is especially useful for proving properties about recursively defined operations.
- The terms “recursion” and “induction” are often used interchangeably.

Example: Natural Numbers

- Recursive definition of \mathbf{N} :
 1. $0 \in \mathbf{N}$.
 2. If $n \in \mathbf{N}$, then $S(n) \in \mathbf{N}$.
 3. The members of \mathbf{N} are distinct (no confusion).
 4. \mathbf{N} is the smallest such set (no junk).

- Induction principle for \mathbf{N} :

$$\forall P : \mathbf{N} \rightarrow *$$

$$[P(0) \wedge (\forall x : \mathbf{N} . P(x) \Rightarrow P(S(x)))]$$

$$\Rightarrow$$

$$\forall x : \mathbf{N} . P(x)$$

- This induction principle is also called **mathematical induction**.

Example: Stacks of Natural Numbers

- Recursive definition of Stack:
 1. $\text{Bottom} \in \text{Stack}$.
 2. If $n \in \mathbf{N}$ and $s \in \text{Stack}$, then $\text{Push}(n, s) \in \text{Stack}$.
 3. The members of Stack are distinct (no confusion).
 4. Stack is the smallest such set (no junk).
- Induction principle for Stack:

$$\begin{aligned} & \forall P : \text{Stack} \rightarrow * . \\ & [P(\text{Bottom}) \wedge \\ & (\forall s : \text{Stack} . P(s) \Rightarrow (\forall n : \mathbf{N} . P(\text{Push}(n, s))))] \\ & \qquad \Rightarrow \\ & \forall s : \text{Stack} . P(s) \end{aligned}$$

Recursive Function Definitions

- Recursion is extremely useful for defining functions.
 - Can facilitate both reasoning and computation.
- A faulty recursive definition may lead to inconsistencies.
 - Example: $\forall n : \mathbf{N} . f(n) = f(n) + 1$.
- There are several schemes for defining functions by recursion.

Recursive Definition Schemes

- Each scheme has a set of **instance requirements**.
- A scheme is **proper** if every instance of the scheme actually defines a function.
- The **domain** of a scheme is the set of functions f such that f is definable by some instance of the scheme.
- Designers of **mechanized mathematics systems** prefer schemes which:
 - Are proper.
 - Have easily checked instance requirements.
 - Have a large domain of useful functions.

The Primitive Recursive Functions (1)

- The class \mathcal{P} of **primitive recursive functions** is the smallest set of $f : \mathbf{N} \times \cdots \times \mathbf{N} \rightarrow \mathbf{N}$ closed under the following rules:

1. **Successor Function** $(\lambda x : \mathbf{N} . x + 1) \in \mathcal{P}$.
2. **Constant Functions** Each $(\lambda x_1, \dots, x_n : \mathbf{N} . m) \in \mathcal{P}$ where $0 \leq m, n$.
3. **Projection Functions** Each $(\lambda x_1, \dots, x_n : \mathbf{N} . x_i) \in \mathcal{P}$ where $1 \leq n$ and $1 \leq i \leq n$.
4. **Composition** If $g_1, \dots, g_m, h \in \mathcal{P}$, then $f \in \mathcal{P}$ where:

$$\begin{aligned} \forall x_1, \dots, x_n : \mathbf{N} . \\ f(x_1, \dots, x_n) = h(g_1(x_1, \dots, x_n), \dots, g_m(x_1, \dots, x_n)). \end{aligned}$$

5. **Primitive Recursion** If $g, h \in \mathcal{P}$, then $f \in \mathcal{P}$ where:

$$\begin{aligned} \forall x_2, \dots, x_n : \mathbf{N} . f(0, x_2, \dots, x_n) = g(x_2, \dots, x_n). \\ \forall x_1, \dots, x_n : \mathbf{N} . \\ f(x_1 + 1, x_2, \dots, x_n) = h(x_1, f(x_1, x_2, \dots, x_n), x_2, \dots, x_n). \end{aligned}$$

The Primitive Recursive Functions (2)

- **Example.** The factorial function $f : \mathbf{N} \rightarrow \mathbf{N}$ is defined by:
 1. $f(0) = g() = 1$.
 2. $f(n + 1) = h(n, f(n))$ where $h(x, y) = y * (x + 1)$.
- The primitive recursion scheme is proper.
- \mathcal{P} is a very large, but proper, subset of the computable total functions on \mathbf{N} .
 - \mathcal{P} contains almost all functions on \mathbf{N} commonly found in mathematics.
- **Theorem.** There exists a computable total function $f : \mathbf{N} \rightarrow \mathbf{N}$ such that $f \notin \mathcal{P}$.

Proof: Construct f by diagonalization.

Well-Founded Relations

- A relation $R \subseteq A \times A$ is **well-founded**, if for all nonempty $B \subseteq A$, there is some $a \in B$ such that, for all $b \in B$, $\neg bRa$.
 - a is called an **R -least element** of B .
- **Proposition.** If R is a strict total order, then R is well-founded iff R is a well-order.

Well-Founded Recursion

- A tuple (T, f, D, R) where
 - T is a theory,
 - $f : A \rightarrow A$,
 - D is a definition of the form
$$\forall x . f(x) = E(f(a_1(x)), \dots, f(a_k(x))), \text{ and}$$
 - R is a well-founded relation on A

defines f to be a total function in T by **well-founded recursion** if $T \models \forall x . a_i(x) R x$ for each i with $1 \leq i \leq k$.

- **Example.** $(P, f, D, <)$ where
 - P is first-order Peano arithmetic,
 - $f : \mathbf{N} \rightarrow \mathbf{N}$,
 - D is $\forall n . f(n) = \text{if}(n = 0, 1, f(n - 1) * n)$, and
 - $<$ is the usual order on \mathbf{N}

defines the factorial function in P .

Monotone Functionals

- A **functional** is an expression of type $\alpha \rightarrow \alpha$ where $\alpha = \alpha_1 \times \cdots \times \alpha_n \rightarrow \alpha_{n+1}$.
- **Subfunction:** $\forall g, h : \alpha . g \sqsubseteq_\alpha h \Leftrightarrow$
$$\forall x_1 : \alpha_1, \dots, x_n : \alpha_n . g(x_1, \dots, x_n) \downarrow \Rightarrow g(x_1, \dots, x_n) = h(x_1, \dots, x_n).$$
- **Monotone:** $\forall F : \alpha \rightarrow \alpha . \text{monotone}_\alpha(F) \Leftrightarrow$
$$\forall g, h : \alpha . g \sqsubseteq_\alpha h \Rightarrow F(g) \sqsubseteq_\alpha F(h).$$
- **Fixed Point Theorem.** Every monotone functional has a least fixed point.

Proof: $F^\gamma(\Delta_\alpha)$ must be a fixed point for some ordinal γ , where Δ_α is the empty function of type α .

Monotone Functional Recursion

- A **recursive definition via a monotone functional** is a triple $R = (T, f, F)$ where:
 - $T = (L, \Gamma)$ is a theory (in a higher-order logic that admits partial functions).
 - f is a constant of type α which is not a member of L .
 - F is a functional of type $\alpha \rightarrow \alpha$ which is monotone in T .
- The **defining axiom** of R is A which says “ f is a least fixed point of F ”.
- The **definitional extension resulting from R** is the theory $(L \cup \{f\}, \Gamma \cup \{A\})$.

Examples

- **Empty function:** $\lambda f : \mathbf{Z} \multimap \mathbf{Z} . \lambda n : \mathbf{Z} . f(n).$
- **Empty function:** $\lambda f : \mathbf{Z} \multimap \mathbf{Z} . \lambda n : \mathbf{Z} . f(n) + 1.$
- **Factorial:** $\lambda f : \mathbf{N} \multimap \mathbf{N} . \lambda n : \mathbf{N} . \text{if}(n = 0, 1, f(n - 1) * n).$
- **Sum:** $\lambda \sigma : \mathbf{Z} \times \mathbf{Z} \times (\mathbf{Z} \multimap \mathbf{R}) \multimap \mathbf{R} .$
 $\lambda m, n : \mathbf{Z}, f : \mathbf{Z} \multimap \mathbf{R} . \text{if}(m \leq n, \sigma(m, n - 1, f) + f(n), 0).$