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What is Recursion?

• Recursion is a method of defining a structure or
operation in terms of itself.

– One of the most fundamental ideas of computing.

– Can make some specifications, descriptions, and
programs easier to express and prove correct.

• Induction is a method of proof based on a recursively
defined structure.

– The recursively defined structure and the proof method
are specified by an induction principle (sometimes
called a structural induction principle).

– Induction is especially useful for proving properties about
recursively defined operations.

• The terms “recursion” and “induction” are often used
interchangeably.
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Example: Natural Numbers

• Recursive definition of N:

1. 0 ∈ N.

2. If n ∈ N, then S(n) ∈ N.

3. The members of N are distinct (no confusion).

4. N is the smallest such set (no junk).

• Induction principle for N:

∀P : N → ∗ .

[P (0) ∧ (∀x : N . P (x) ⇒ P (S(x)))]

⇒
∀x : N . P (x)

• This induction principle is also called mathematical

induction.
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Example: Stacks of Natural Numbers

• Recursive definition of Stack:

1. Bottom ∈ Stack.

2. If n ∈ N and s ∈ Stack, then Push(n, s) ∈ Stack.

3. The members of Stack are distinct (no confusion).

4. Stack is the smallest such set (no junk).

• Induction principle for Stack:

∀P : Stack → ∗ .

[P (Bottom) ∧
(∀ s : Stack . P (s) ⇒ (∀n : N . P (Push(n, s)))]

⇒
∀ s : Stack . P (s)
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Recursive Function Definitions

• Recursion is extremely useful for defining functions.

– Can facilitate both reasoning and computation.

• A faulty recursive definition may lead to inconsistencies.

– Example: ∀n : N . f(n) = f(n) + 1.

• There are several schemes for defining functions by

recursion.
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Recursive Definition Schemes

• Each scheme has a set of instance requirements.

• A scheme is proper if every instance of the scheme

actually defines a function.

• The domain of a scheme is the set of functions f such

that f is definable by some instance of the scheme.

• Designers of mechanized mathematics systems prefer

schemes which:

– Are proper.

– Have easily checked instance requirements.

– Have a large domain of useful functions.
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The Primitive Recursive Functions (1)

• The class P of primitive recursive functions is the

smallest set of f : N × · · · × N → N closed under the

following rules:

1. Successor Function (λ x : N . x + 1) ∈ P.

2. Constant Functions Each (λ x1, . . . , xn : N . m) ∈ P
where 0 ≤ m, n.

3. Projection Functions Each (λ x1, . . . , xn : N . xi) ∈ P
where 1 ≤ n and 1 ≤ i ≤ n.

4. Composition If g1, . . . , gm, h ∈ P, then f ∈ P where:

∀x1, . . . , xn : N .
f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

5. Primitive Recursion If g, h ∈ P, then f ∈ P where:

∀x2, . . . , xn : N . f(0, x2, . . . , xn) = g(x2, . . . , xn).
∀x1, . . . , xn : N .

f(x1 + 1, x2, . . . , xn) = h(x1, f(x1, x2, . . . , xn), x2, . . . , xn).
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The Primitive Recursive Functions (2)

• Example. The factorial function f : N → N is defined

by:

1. f(0) = g() = 1.

2. f(n + 1) = h(n, f(n)) where h(x, y) = y ∗ (x + 1).

• The primitive recursion scheme is proper.

• P is a very large, but proper, subset of the computable

total functions on N.

– P contains almost all functions on N commonly found

in mathematics.

• Theorem. There exists a computable total function

f : N → N such that f 6∈ P.

Proof: Construct f by diagonalization.
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Well-Founded Relations

• A relation R ⊆ A×A is well-founded, if for all nonempty

B ⊆ A, there is some a ∈ B such that, for all b ∈ B, ¬bRa.

– a is called an R-least element of B.

• Proposition. If R is a strict total order, then R is well-

founded iff R is a well-order.
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Well-Founded Recursion

• A tuple (T, f, D, R) where

– T is a theory,

– f : A → A,

– D is a definition of the form

∀x . f(x) = E(f(a1(x)), . . . , f(ak(x))), and

– R is a well-founded relation on A

defines f to be a total function in T by well-founded
recursion if T |= ∀x . ai(x) R x for each i with 1 ≤ i ≤ k.

• Example. (P, f, D, <) where

– P is first-order Peano arithmetic,

– f : N → N,

– D is ∀n . f(n) = if(n = 0,1, f(n− 1) ∗ n), and

– < is the usual order on N

defines the factorial function in P .
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Monotone Functionals

• A functional is an expression of type α ⇀ α where

α = α1 × · · · × αn ⇀ αn+1.

• Subfunction: ∀ g, h : α . g vα h ⇔
∀x1 : α1, . . . , xn : αn . g(x1, . . . , xn)↓

⇒ g(x1, . . . , xn) = h(x1, . . . , xn).

• Monotone: ∀F : α ⇀ α . monotoneα(F ) ⇔
∀ g, h : α . g vα h ⇒ F (g) vα F (h).

• Fixed Point Theorem. Every monotone functional has

a least fixed point.

Proof: F γ(4α) must be a fixed point for some ordinal

γ, where 4α is the empty function of type α.
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Monotone Functional Recursion

• A recursive definition via a monotone functional is a

triple R = (T, f, F ) where:

– T = (L,Γ) is a theory (in a higher-order logic that

admits partial functions).

– f is a constant of type α which is not a member of L.

– F is a functional of type α ⇀ α which is monotone in

T .

• The defining axiom of R is A which says

“f is a least fixed point of F”.

• The definitional extension resulting from R is the

theory (L ∪ {f},Γ ∪ {A}).
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Examples

• Empty function: λ f : Z ⇀ Z . λ n : Z . f(n).

• Empty function: λ f : Z ⇀ Z . λ n : Z . f(n) + 1.

• Factorial: λ f : N ⇀ N . λ n : N . if(n = 0,1, f(n− 1) ∗ n).

• Sum: λ σ : Z×Z× (Z ⇀ R) ⇀ R .

λ m, n : Z, f : Z ⇀ R . if(m ≤ n, σ(m, n− 1, f) + f(n),0).
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