

CAS 701 Fall 2002

Final Examination

Instructor: William M. Farmer

You have 3 hours to complete this test worth 100 points consisting of 3 pages and 8 questions. Write your answers in the examination booklet provided to you. Good luck!

- (1) [10 pts.] Use truth tables to verify that the de Morgan Laws for propositional logic are tautologies:
 - (a) $\neg(P \wedge Q) \Leftrightarrow (\neg P \vee \neg Q)$.
 - (b) $\neg(P \vee Q) \Leftrightarrow (\neg P \wedge \neg Q)$.
- (2) [10 pts.] Find a set S of real numbers such that the order type of (S, \leq) is γ where:
 - (a) $\gamma = \omega$.
 - (b) $\gamma = \omega + \omega$.
 - (c) $\gamma = \omega \cdot \omega$.
- (3) [20 pts.] Let A be a set with $|A| > 1$, F be the set of all total functions $f : A \rightarrow A$, and $\circ : F \times F \rightarrow F$ be composition (i.e., for all $f, g \in F$ and $x \in A$, $(f \circ g)(x) = f(g(x))$).
 - (a) Show that there is some $h \in F$ such that (F, \circ, h) is a monoid.
 - (b) Show that there is some F' with $\{h\} \subset F' \subset F$ and some $i : F \rightarrow F$ such that (F', \circ, i, h) is a group.
- (4) [10 pts.] Assume that the following statements hold:
 - F is a sound and complete formal system for a language L .
 - $T = (L, \Gamma)$ is a theory such that T is consistent in F , T is complete, and Γ is finite.

Describe a decision procedure for T , i.e., describe an algorithm that, given a formula φ of L , determines whether $T \models \varphi$ or $T \models \neg\varphi$. Explain why your procedure is correct.

- (5) [10 pts.] Consider the theory $T = (L, \Gamma)$ of first-order logic such that:

$L = (\mathcal{V}, \emptyset, \emptyset, \{=, <\})$ where $=$ and $<$ are binary.

$\Gamma = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5\}$ where:

- φ_1 is $\forall x . \neg(x < x)$.
- φ_2 is $\forall x, y, z . x < y \wedge y < z \Rightarrow x < z$.
- φ_3 is $\forall x, y . x = y \vee x < y \vee y < x$.
- φ_4 is $\forall x, y . \exists z . x < y \Rightarrow x < z \wedge z < y$.
- φ_5 is $\exists x, y . \neg(x = y)$.

- (a) Describe four nonisomorphic models of T of cardinality $\leq \omega$.
- (b) Describe one uncountable model of T of cardinality $> \omega$.
- (6) [10 pts.] Formalize in simple type theory (STT) the theory of 3-colorable graphs. A graph is *3-colorable* if the nodes of the graph can be colored using three different colors such that, for all nodes n_1, n_2 in the graph, if there is an edge from n_1 to n_2 , then n_1 and n_2 have different colors.
- (7) [10 pts.] Recall that the *Ackermann function* $A : \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$ is defined recursively by the following equations:

$$\begin{aligned} A(0, y) &= y + 1. \\ A(x + 1, 0) &= A(x, 1). \\ A(x + 1, y + 1) &= A(x, A(x + 1, y)). \end{aligned}$$

Explain how this definition can be viewed as an instance of well-founded recursion. Hint: The well-founded relation is a certain lexicographical order.

(8) [20 pts.] Consider the theory $T = (L, \Gamma)$ of simple type theory:

$L = (\mathcal{V}, \{A, P, V, L, R\}, \tau)$ where

$$\begin{aligned}\tau(A) &= (* \rightarrow \iota). \\ \tau(P) &= (\iota \rightarrow (\iota \rightarrow \iota)). \\ \tau(V) &= (\iota \rightarrow *). \\ \tau(L) &= (\iota \rightarrow \iota). \\ \tau(R) &= (\iota \rightarrow \iota).\end{aligned}$$

$\Gamma = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6, \varphi_7\}$ where:

$$\begin{aligned}\varphi_1 \text{ is } & \forall x : * . \forall s, t : \iota . \neg(A(x) = P(s, t)). \\ \varphi_2 \text{ is } & \forall x_1, x_2 : * . A(x_1) = A(x_2) \Rightarrow x_1 = x_2. \\ \varphi_3 \text{ is } & \forall s_1, s_2, t_1, t_2 : \iota . \\ & P(s_1, t_1) = P(s_2, t_2) \Rightarrow (s_1 = s_2 \wedge t_1 = t_2). \\ \varphi_4 \text{ is } & \forall x : * . V(A(x)) = x. \\ \varphi_5 \text{ is } & \forall s, t : \iota . L(P(s, t)) = s. \\ \varphi_6 \text{ is } & \forall s, t : \iota . R(P(s, t)) = t. \\ \varphi_7 \text{ is } & \forall Q : (\iota \rightarrow *). \\ & [(\forall x : * . Q(A(x))) \wedge \\ & (\forall s, t : \iota . (Q(s) \wedge Q(t)) \Rightarrow Q(P(s, t)))] \Rightarrow \\ & \forall t : \iota . Q(t).\end{aligned}$$

T is a theory of binary trees whose leaves are truth values.

- (a) Which of the axioms of T ensure that there is “no confusion” in the models of T ?
- (b) Which of the axioms of T ensure that there is “no junk” in the models of T ?
- (c) By recursion, define $M : (\iota \rightarrow \iota)$ in T to be the function that, given a tree t , returns the tree t' that is the “mirror” of t . Your definition should have the form

$$M = (\lambda t : \iota . B).$$

- (d) Explain why your definition of M makes sense.
- (e) Prove in T that

$$\forall t : \iota . M(M(t)) = t.$$

Test ends here.

3/3