

Computing and Software 701

Logic and Discrete Mathematics In Software Engineering

Fall 2004

Final Exam

Instructor: William M. Farmer

You have 3 hours to complete this exam consisting of 2 pages and 6 questions. Write your answers in the examination booklet provided to you. Give reasons for your answers. Good luck!

- (1) Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be total, and let $h = g \circ f : A \rightarrow C$ be the composition of g and f .
 - (a) [5 pts.] If h is injective, does it follow that f is injective? Give a proof or counterexample.
 - (b) [5 pts.] If h is injective, does it follow that g is injective? Give a proof or counterexample.
- (2) [10 pts.] Let $L = (\emptyset, \emptyset, \{=, <\})$ be a language of FOL. Find a set Γ of formulas of L such that $T = (L, \Gamma)$ is a first-order theory of strict partial orders that do not have a maximum element.
- (3) [10 pts.] Let T be the full infinite (ω) branching tree of infinite (ω) height. (The branches at each node are labeled $0, 1, 2, \dots$.) What is the cardinality of the set of infinite paths in T that start at the root of the tree? You may use results proved in class or as exercises.
- (4) [10 pts.] Consider the algebra $A = (S, \text{cat})$ where S is the set of strings over the alphabet $\{a, b, c, \dots, x, y, z\}$, and cat is string concatenation. Show that A has the structure of a monoid.
- (5) [10 pts.] Let $\text{COF} = (L, \Gamma)$ be the theory of a complete ordered field defined in class. Using function abstraction and definite description, find an expression E whose value in a model of COF is the division function.
- (6) Let $\text{COF}' = (L, \Gamma)$, where $L = (\{\text{Real}\}, \mathcal{C}, \tau)$, be the theory of a complete ordered field in many-sorted STT that is obtained from COF by renaming ι to Real . Let $T = (L', \Gamma \cup \Gamma')$ where:

Test continues on next page.

1/2

$L' = (\{\text{Real}, \text{List}\}, \mathcal{C} \cup \mathcal{C}', \tau')$, $\mathcal{C}' = \{\text{nil}, \text{cons}, \text{head}, \text{tail}\}$, τ is a subfunction of τ' , and τ' on \mathcal{C}' is defined by the following table:

Constant c	Type $\tau'(c)$
nil	List
cons	$\text{Real} \rightarrow (\text{List} \rightarrow \text{List})$
head	$\text{List} \rightarrow \text{Real}$
tail	$\text{List} \rightarrow \text{List}$

Γ' contains the following formulas of L' :

1. $\forall r : \text{Real}, x : \text{List} . \text{nil} \neq \text{cons}(r)(x)$.
2. $\forall r_1, r_2 : \text{Real}, x_1, x_2 : \text{List} .$
 $\text{cons}(r_1)(x_1) = \text{cons}(r_2)(x_2) \Rightarrow (r_1 = r_2 \wedge x_1 = x_2)$.
3. $\forall r : \text{Real}, x : \text{List} . \text{head}(\text{cons}(r)(x)) = r$.
4. $\forall r : \text{Real}, x : \text{List} . \text{tail}(\text{cons}(r)(x)) = x$.
5. $\forall p : \text{List} \rightarrow *$.
 $(p(\text{nil}) \wedge (\forall x : \text{List} . p(x) \Rightarrow \forall r : \text{Real} . p(\text{cons}(r)(x))))$
 $\Rightarrow \forall x : \text{List} . p(x)$.

T is a theory of (finite) lists of real numbers such that

$$\text{cons}(2)(\text{cons}(17)(\text{cons}(31)(\text{nil})))$$

represents the list $\langle 2, 17, 31 \rangle$. The *sum* of this list is the real number $2 + 17 + 31$. The *product* of a real number r and this list is the list $\langle r * 2, r * 17, r * 31 \rangle$.

- (a) [5 pts.] Which of the axioms in Γ' ensure that there is “no confusion” in the models of T ?
- (b) [5 pts.] Which of the axioms in Γ' ensure that there is “no junk” in the models of T ?
- (c) [10 pts.] Define by well-founded recursion a constant **sum** of type $\text{List} \rightarrow \text{Real}$ to be the function that gives the sum of a list. What is the well-founded relation?
- (d) [10 pts.] Write a term rewrite system \mathcal{R} that computes the sum of a ground expression of type **List** and that is sound with respect to T , confluent, and finitely terminating (but not complete with respect to T).
- (e) [10 pts.] Define by well-founded recursion a constant **prod** of type $\text{Real} \rightarrow (\text{List} \rightarrow \text{List})$ to be the function that gives the product of a real number and a list. What is the well-founded relation?
- (f) [10 pts.] Using axiom 5, prove

$$T \models \forall r : \text{Real}, x : \text{List} . \text{sum}(\text{prod}(r)(x)) = r * \text{sum}(x).$$

Test ends here.

2/2