
Solutions of Exercise Group Number 2

Logic and Discrete Mathematics in Software Engineering

Fall 2008

Exercise 1

A ∪ B
= { definition of complement }
{x | x ∈ U : ¬(x ∈ (A ∪ B))}
= { definition of /∈ }
{x | x ∈ U : ¬(x ∈ A ∨ x ∈ B)}
= { DeMorgan for Propositional Logic }
{x | x ∈ U : ¬(x ∈ A) ∧ ¬(x ∈ B)}
= { definition of /∈ }
{x | x ∈ U : x /∈ A ∧ x /∈ B}

The other law is exactly the same idea (mutatis mutandis).

Exercise 2

(A ∩ B) ∪ (A ∩ B)
= { distributivity ∪, ∩ }
A ∩ (B ∪ B)
= { complement properties }
A ∩ U
= { A ⊆ U }
A
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Exercise 3

A ⊕ B
= { definition of ⊕ }
(A ∪ B) − (A ∩ B)
= { definition of − }
(A ∪ B) ∩ (A ∩ B)
= { DeMorgan}
(A ∪ B) ∩ (A ∪ B)
= { Distributivity }
(A ∩ (A ∪ B) ∪ (B ∩ (A ∪ B))
= { Distributivity }
((A ∩ A) ∪ (A ∩ B)) ∪ ((B ∩ A) ∪ (B ∩ B))
= { properties of complement and union }
(A ∩ B) ∪ (B ∩ A)
= { definition of −}
(A − B) ∪ (B − A)

1 Exercise 4

a)

f(x) = −3x + 4 is a bijection.
Proof.
Injectivity)
We have to prove: f(x) = f(y) ⇒ x = y (contrapositive of x 6= y ⇒ f(x) 6= f(y)).

f(x) = f(y)
⇒ {definition of f}
−3x + 4 = −3y + 4
⇒ {Arithmetic}
x = y

Onto)
We have to prove: ∀x : ∃y : f(y) = x. Let x ∈ R be then:

x = (−3 ∗ x − 4

−3
) + 4 = f(

x − 4

−3
)

�

b)

f(x) = −3x2 + 7. This function is not bijective because it is not surjective. For example, there
is no x such that: f(x) = 10. Otherwise:
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f(x) = 10
⇒ {definition of f}
−3x2 + 7 = 10
⇒ {Arithmetic}
−3x2 = 3
⇒ {Arithmetic}
x2 = −1!

which is a contradiction (we need complex numbers for such a solution).

c)

f(x) =
x + 1

x + 2

This function is not bijective, because it is not a surjective function. For example does not
exist some x such that f(x) = 1. Otherwise:

1 =
x + 1

x + 2
⇔ x + 2 = x + 1 ⇔ 2 = x + 1 − x ⇔ 2 = 1

which is a contradiction.

d)

f(x) = x5 + 1 is a bijective function.
Proof.
Injectivity)

f(x) = f(y)
⇒ {definition of f}
x5 + 1 = y5 + 1
⇒ {Arithmetic}
x5 = y5

⇒ {Arithmetic}
5
√

x5 = 5

√

y5

⇒ {Arithmetic, 5
√

preserves signs}
x = y

Surjectivity) Let x be an element of R then:

x = ( 5
√

x − 1)5 + 1 = f( 5
√

x − 1)
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Exercise 5

a)

We have to prove: f−1(S ∪ T ) = f−1(S) ∪ f−1(T ). Recall the definition of inverse image is:

f−1(S) = {a ∈ A | f(a) ∈ S}

We prove this showing that: a ∈ f−1(S ∪ T ) ⇔ a ∈ f−1(S) ∪ f−1(T ),
Proof.

a ∈ f−1(S ∪ T )
⇔ {definition of f−1}
f(a) ∈ S ∪ T
⇔ {definition of ∪ }
f(a) ∈ S ∨ f(a) ∈ T
⇔ {definition of f−1}
a ∈ f−1(S) ∨ a ∈ f−1(T )
⇔ {definition of ∪}
a ∈ f−1(S) ∪ f−1(T )

b)

We have to prove: f−1(S ∩ T ) = f−1(S) ∩ f−1(T ), we prove this showing that:

a ∈ f−1(S ∩ T ) ⇔ a ∈ f−1(S) ∩ f−1(T )

Proof.

a ∈ f−1(S ∩ T )
⇔ {definition of f−1}
f(a) ∈ S ∩ T
⇔ {definition of ∩}
f(a) ∈ S ∧ f(a) ∈ T
⇔ {definition of f−1}
a ∈ f−1(S) ∧ a ∈ f−1(T )
⇔ {definition of ∩}
a ∈ f 1(S) ∩ f−1(T )

Exercise 6

Consider the following matrices:

MR1
=





0 1 0
1 1 1
1 0 0




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MR2
=





0 1 0
0 1 1
1 1 1





then:

a)

MR1∪R2
=





0 1 0
1 1 1
1 1 1





b)

MR1∩R2
=





0 1 0
0 1 1
1 0 0





c)

MR2◦R1
=





0 1 1
1 1 1
0 1 0





d)

MR1◦R1
=





1 1 1
1 1 1
0 1 0





e)

MR1⊕R2
=





0 0 0
1 0 0
0 1 1





Exercise 7

Let R be the following relation: (a, b)R(c, d) ⇔ a ∗ d = b ∗ c. We have to prove that R is a
equivalence relation.
Proof.

Reflexivity) By arithmetic we know a ∗ b = a ∗ b but this implies (a, b)R(a, b)
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Symmetry)

(a, b)R(c, d)
⇒ {definition of R}
a ∗ d = b ∗ c
⇒ {symmetry of = and commutativity of ∗}
c ∗ b = d ∗ a
⇒ {definition of R}
(c, d)R(a, b)

transitivity) Suppose (a, b)R(c, d) ∧ (c, d)R(e, f) by definition of R it holds that:

1. a ∗ d = b ∗ c

2. c ∗ f = d ∗ e

If we multiply a in both sides of (2) we obtain:

a ∗ c ∗ f = a ∗ d ∗ e

But by (1) we can replace a ∗ d by b ∗ c then we obtain:

a ∗ c ∗ f = b ∗ c ∗ e

Then we can eliminate c (recall that c 6= 0) from both sides, and then:

a ∗ f = b ∗ e

But by definition of R this means: (a, b)R(e, f).

Exercise 8

a)

The class of equivalence is [(1, 2)]R = {(a, b) ∈ R | b = 2a}

b)

The class of equivalence of (a, b) are the numbers
c

d
(represented as (c, d)) such that

a

b
=

c

d
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Exercise 9

a)

Integers divisible by 3. This set is countable. Let us call Z−3 the set of integers not divisible
by 3, note that the number 0 does not belong to this set because: 0 ∗ 3 = 0. The following
one-to-one function maps each natural to one element of Z

+

−3 (the positive part of Z−3).

f(x) = b3

2
∗ xc + 1

This function works as follows:

N f Z
+

−3

0 ↔ 1
1 ↔ 2
2 ↔ 4
3 ↔ 5
4 ↔ 7

.

.

.

Defining a bijective function f ′ : Z
+

−3 → Z−3 is straightforward, and therefore we obtain a new
bijection f ′ ◦ f : N → Z−3.

b)

The following function maps the natural to the positive part of the required set.

f(x) = 5 ∗ (b7

6
∗ xc + 1)

This function works as follows:

N g F

0 ↔ 5
1 ↔ 10
2 ↔ 15
3 ↔ 20
4 ↔ 25
5 ↔ 30
6 ↔ 40

.

.

.

As we did above, it is straightforward to extend this function for the negative part of this set.
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c)

Real numbers with decimal representation with all 1’s. This set is countable. We call this set
U . First note that we can map each (finite) real number with decimal representation of 1’s, to
tuples (n, m) where n is the number of 1’s in x at the right of the point, and m is the number
at the left. The problem is when the right part is infinite, we fix this adding one to the second
component, i.e., we define the following function: f : U → N × N, as follows:

f(x) =

{

(n, 0) if the left part of x has n 1’s and the right part is infinite
(n, m + 1) if the left part of x has n 1’s and the right has m 1’s

For example:

U f N × N

1 ↔ (1, 1)
11 ↔ (2, 1)
1.111... ↔ (1, 0)
11.1111... ↔ (2, 0)
11.11 ↔ (2, 3)

.

.

.

then we have to show that N × N is numerable, we can do that using the following matrix:

0 1 2 3 ...
0 (0, 0) (0, 1) (0, 2) (0, 3) ...
1 (1, 0) (1, 1) (1, 2) (1, 3) ...
2 (2, 0) (2, 1) (2, 2) (2, 3) ...
. ...
. ...
.

And then we can use the Cantor numeration with this matrix, that is:

(0, 0), (0, 1), (1, 0), (2, 0), (1, 1), (0, 2), ...

�

d)

Real number with decimal representation with all 1’s or 9’s. This set is not countable. To
prove this we can use the diagonal argument, proving that a subset of this set is no countable.
Consider:

R = {1.d1d2d3.... | di ∈ {1, 9}}
Suppose that we can enumerate this set, then we can list its elements in the following way:
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1.d1,1 d1,2 d1,3 d1,4.....
1.d2,1 d2,2 d2,3 d2,4.....
1.d3,1 d3,2 d3,3 d3,4.....
.
.
.
.
.

Now, we can consider the number:

e = 1.d1,1 d2,2 d3,3 d4,4....

where:

di,i =

{

1 if di,i = 9
9 if di,i = 1

This number is different that each number listed before because it differs by one digit with each
of them! I.e., we have found a number in R not listed, this is a contradiction, then R is not
enumerable.

Exercise 10

Consider the solutions of equations of type: ax2 + bx + c = 0, the set of real numbers which
are solutions of these equations is countable. First, every solution x of this equation could be
calculate with the following formula:

x =
b� 2

√
b2 − 2 ∗ a ∗ c

2 ∗ a

Where � = −/+. This implies that we can enumerate these x’s using tuples (a, b, c). The if we
prove that Z×Z×Z is numerable then is straightforward that the set of solution is numerable.
But we know that Z is equipollent to N then we only have to prove that N×N×N is numerable.
To see this, first we prove that N×N is numerable, the proof is the standard one, consider the
following matrix:

0 1 2 3 ...
0 (0, 0) (0, 1) (0, 2) (0, 3) ...
1 (1, 0) (1, 1) (1, 2) (1, 3) ...
2 (2, 0) (2, 1) (2, 2) (2, 3) ...
. ...
. ...
.

Then the enumeration is: (0, 0), (0, 1), (1, 0), (2, 0), (1, 1), (0.2).... We call this function f . Now
using f we can build a function one-to-one from N × N × N to N × N, given the tuple (a, b, c)
we only maps it to (a, f(b, c)), since f is one-to-one the new function is one-to-one too.
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Exercise 11

Given a relation R ⊆ A × B, we define the function fR as follows:

fR(x) = {y ∈ B | xRy}

Exercise 12

Consider the set F = {f | f : N → N}, this set is not countable, it has the cardinality of
real numbers. To see this, we can show a one-to-one function between functions in F and the
numbers in the interval [0, 1), by Cantor’s theorem we know that this interval has the same
cardinality that real numbers. We define the following one-to-one function χ : F → [0, 1), as
follows:

χ(f) = 0.f(0)f(1)(2)f(3)f(4)...

We can proof that this function is a bijection:
Proof.
Injectivity) Suppose two functions f 6= g, that means that exists some x such that: f(x) 6= g(x),
but this means that χ(f) 6= χ(g), since them differ in their xth element.

Surjectivity) Suppose a number x = 0.d0d1d2... then we can build the function: f(i) = di.

Exercise 13

Let f : A → B and g : B → C be total, and let g ◦ f : A → C.

a)

We have to prove that if f and g are injective than also g ◦ f is injective.

Proof. We have to prove: x 6= y ⇒ g ◦ f(x) 6= g ◦ f(y).

x 6= y
⇒ {f is injective}
f(x) 6= f(y)
⇒ {g is injective}
g(f(x)) 6= g(f(y))
⇒ {definition of ◦}
g ◦ f(x) 6= g ◦ f(y)

�

The converse of this property is not true. We can show this by means of a counterexample,
consider the following scenario:

• A = {a}
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• B = {b, c}

• C = {d}

• f(a) = b

• g(b) = d and g(c) = d

then g ◦ f is injective but g is not injective.

b)

We have to prove: ∀c ∈ C : ∃a ∈ A : g ◦ f(a) = c. We know that f and g are injective. Let
c ∈ C be, then by hypothesis:

∃b ∈ B : g(b) = c (1)

but also:
∃a ∈ A : f(a) = b (2)

But then using 1 and 2 and replacing f(a) by b we obtain:

∃a ∈ A : g(f(a)) = c

�

The converse is false in general. The counterexample given in item a) works, in that scenario
g ◦ f is surjective but f is not surjective.

Exercise 14

a)

We can enumerate the nodes using binary numbers, 1 to the root, and then, let n be the binary
number of some node, the number of the left child is n0 (the number n followed by 0), and the
number of the right child is n1. The total of binary numbers that we obtain is 2h+1 − 1, where
h is the height. The cardinality of the set of paths is the same that the set of leaves which is
2h.

1.1 b)

Using the same enumeration of exercise b, we can map each node to a natural number, and
therefore the cardinality of this set is ℵ0. On the other hand, the set of paths is of cardinality
ℵ1, this can be proved using the fact that each path is an infinite sequence of binary numbers,
and then we can give a bijection between this set and the interval [0, 1), which is of cardinality
ℵ1.
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