

Computing and Software 701
Logic and Discrete Mathematics
In Software Engineering

Fall 2008

Exercise 2

100 pts.

Due 16 October 2008

Revised: 8 October 2008

In the following exercises, Rosen means the textbook K. H. Rosen, *Discrete mathematics and its Applications, Fifth Edition*, 2003.

1. [4 pts.] State and prove the de Morgan Laws for sets.
2. [4 pts.] Exercise 16 on p. 95 of Rosen.
3. [4 pts.] Exercise 28 on p. 95 of Rosen.
4. [4 pts.] Exercise 18 on p. 109 of Rosen.
5. [4 pts.] Exercise 36 on p. 110 of Rosen.
6. [10 pts.] Exercise 14 on p. 495 of Rosen.
7. [4 pts.] Exercise 10 on p. 513 of Rosen.
8. [8 pts.] Exercise 28 on p. 514 of Rosen.
9. [8 pts.] Exercise 32 on p. 237 of Rosen.
10. [4 pts.] Exercise 40 on p. 238 of Rosen.
11. [4 pts.] Show how a relation $R \subseteq A \times B$ can be transformed into an “equivalent” total function $f_R : A \rightarrow \mathcal{P}(B)$, where $\mathcal{P}(B)$ is the power set of B . (A function like f_R is sometimes called a *many-valued function*.)
12. [10 pts.] What is the cardinality of the function space $\mathbf{N} \rightarrow \mathbf{N}$, where \mathbf{N} denotes the set of natural numbers?

13. [16 pts.] Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be total, and let $h = g \circ f : A \rightarrow C$ be the composition of g and f .

- Prove that, if f and g are injective, then h is injective, but the converse is false.
- Prove that, if f and g are surjective, then h is surjective, but the converse is false.

14. [16 pts.]

- Let T_n be a full binary tree of height $n \geq 1$. What is the cardinality of the set of nodes in T_n ? What is the cardinality of the set of paths in T_n ?
- Let T_∞ be a full binary tree of infinite height. What is the cardinality of the set of nodes in T_∞ ? What is the cardinality of the set of paths in T_∞ ?