
Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.1

Church’s Lambda Calculus
A Quick Overview

CAS 701 Class Presentation
18 November 2008

Mohammad Hosein Yarmand
Department of Computing & Software

McMaster University



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.2

Outline
1 Syntax

Grammar
Application

2 Reduction
Free and Bound
Reduction Rules

3 Lambda Calculus
Numbers
Arithmetic functions
Logic functions

4 Recursion
Recursion
Loop

5 Semantics
Semantics

6 Theorems
Computability
Confluence

7 Shortcoming
Type Problem



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.3

Introduction

• Lambda calculus is a formal system designed to
investigate function definition, application and recursion.

• Proposed by Alonzo Church and Stephen Cole Kleene in
the 1930s.

• Intended to investigate the foundations of mathematics,
but has emerged as a useful tool in the investigation of
problems in computability or recursion theory, and forms
the basis of functional programming.

• Lambda calculus raised implementation issue for
stack-based programming languages as it treats functions
as first-class objects.

• Programming languages such as Lisp, Pascal, C++,
Smalltalk and Effel have notions to support Lambda
calculus.



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.4

Grammar

• A name or variable can be any letter a, b, c, ...
• The grammar is defined based on expression, where

expression is:
< expression >:=< name > | < function > | < application >
< function >:= λ < name > . < expression >
< application >:=< expression >< expression >.

• Abbreviation
• Ex. the function f (x , y) = x − y would be written as
λx .λy .x − y . A common convention is to abbreviate curried
functions as λxy .x − y .



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.5

Application

• Functions can be applied to expressions.
• Ex. (λx .x)y .

• Function applications are evaluated by reduction rules.
• Function application associates from the left, i.e. the

expression
E1E2E3...En
is evaluated as:
(...((E1E2)E3)...En).



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.6

Free and Bound Variables

• A variable <name> is free in an expression if one of the
following three cases holds:

• <name> is free in <name>
• <name> is free in λ <name1>.<exp> if the identifier

<name> 6=<name1> and <name> is free in <exp>
• <name> is free in E1E2 if <name> is free in E1 or if it is free

in E2.
• A variable is bound if one of two cases holds:

• <name> is bound in λ<name1>.<exp> if the identifier
<name>=<name1> or if <name> is bound in <exp>

• <name> is bound in E1E2 if <name> is bound in E1 or if it is
bound in E2.



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.7

Reduction Rules(1/2)

• Reduction: the process of evaluating a lambda expression.
• α-conversion: allows bound variable names to be

changed.
• Ex. α-conversion of λx .x would be λy .y .

• η-conversion: two functions are the same if and only if they
give the same result for all arguments. η-conversion
converts between λx .fx and f whenever x does not appear
free in f.



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.8

Reduction Rules(2/2)

• Substitution: perform variable substitution for free
variables. The precise definition must be careful in order to
avoid accidental variable capture and is recursively
defined as follows:

• x [x 7→ N] ≡ N
• y [x 7→ N] ≡ y , if x 6= y
• (M1M2)[x 7→ N] ≡ (M1[x 7→ N])(M2[x 7→ N])

• (λy .M)[x 7→ N] ≡ λy .(M[x 7→ N]), if x 6= y and !y ∈ fv(N)

• β-reduction: expresses the idea of function application.
The beta reduction of ((λV .E)E ′) is simply E [V 7→ E ′].



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.9

Normal Form

• Applying reduction rules does not always stop. The
following is an example, which always reduces to itself:

• (λx .xx)(λx .xx).

• If a sequence of reductions has come to an end where no
further reductions are possible, we say that the term has
been reduced to normal form. As illustrated, not every
term has a normal form.



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.10

Numbers

• Church numerals define numbers as follows:
• 0 := λ f x. x
• 1 := λ f x. f x
• 2 := λ f x. f (f x)
• 3 := λ f x. f (f (f x))

• We define the successor function as:
• SUCC := λ n f x. f (n f x)



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.11

Arithmetic functions

• Addition:
• λ m n f x. n f (m f x)
• λ n m. m SUCC n

• Multiplication:
• λ m n f . m (n f)
• λ m n. m (PLUS n) 0

• Predecessor function is defined as
PERD = λ n f x. n (λ g h. h (g f)) (λ u. x) (λ u. u).

• Substraction function is defined as
λ m n. n PRED m.



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.12

Logic functions

• TRUE := λ x y. x
• FALSE := λ x y. y
• Logical Operators:

• AND := λ p q. p q p
• OR := λ p q. p p q
• NOT := λ p. λ a b. p b a
• IF THEN ELSE := λ p a b. p a b

• As an example:

AND TRUE FALSE
≡ (λ p q. p q p) TRUE FALSE→β TRUE FALSE TRUE
≡ (λ x y. x) FALSE TRUE→β FALSE



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.13

Recursion

• Let us now construct a term for iteration to perform
I n f x = f (f (f . . . (f x) . . . ))
I = λ n f x.zero? n x (I (PRED n) f (f x))

• If n = 0 then zero? n x M will evaluate to x. If n > 0 then we
iterate f (n - 1)-times on the argument (f x).

• This definition of I uses I itself in the body. It does nothing
else but add one further iteration to an assumed (n -
1)-fold iteration.



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.14

Loop

• We change the term on the right into a function which
turns“n - 1-iterator” into“n-iterator”:
Let S be λ M.(λn f x.zero? n x (M (PRED n) f (f x)))

• What we now seek is a term which is a fixpoint for S ,i.e.
I = S I

• There are terms Y which construct a fixpoint for any term
M, that is, they satisfy Y M = M (Y M)



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.15

Semantics

• In order to come up with a semantic, a set D should be
found that is isomorphic to the function space D → D, of
functions on itself.

• The first set-theoratical model for untyped lambda calculus
was made by Dana Scott in 1970s

• He introduced continuos lattices , that are
• Algebraically: those complete lattices D where for every

y ∈ D, y =
W
{

V
U|y ∈ U and U is Scott-open and U ⊆ D}

• Topologically: those T0-spaces such that every continuos
f : X → D from a subspace X ⊆ Y can be extended to a
continuos f : Y → D.

• This work formed the basis for the denotational semantics
of programming languages, fixed point combinators, and
the domain theory.



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.16

Computability & Decidability

• A function F : N → N of natural numbers is a computable
function iff there exists a lambda expression f such that for
every pair of x, y in N, F (x) = y iff f x→β y, where x and y
are the Church numerals corresponding to x and y,
respectively and→β meaning equivalence with
β-reduction.

• Equivalent to Turing machines. A calculus is
Turing-complete if it allows one to define all computable
functions from N to N.

• Undecidability of equivalence.



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.17

Confluence

• Confluence: the result of a computation is independent
from the order of reduction.

• Theorem (Church-Rosser) If a term M can be reduced (in
several steps) to terms N and P, then there exists a term Q
to which both N and P can be reduced (in several steps).

• β-reduction is confluent.
• Every λ-term has at most one normal form.



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.18

Type Problem

• It is possible to write “sin log”, where the sine function is
applied not to a number but to the logarithm function.

• Such terms do not make any sense at all, and any
sensible programming language compiler would reject
them as ill-formed.

• What is missing in the calculus is a notion of type. The
type of a term should tell us what kind of arguments the
term would accept and what kind of result it will produce.

• For example, the type of the sine function should be
“accepts real numbers and produces real number”.



Church’s Lambda
Calculus

Mohammad Hosein
Yarmand

Introduction

Syntax
Grammar

Application

Reduction
Free and Bound

Reduction Rules

Lambda Calculus
Numbers

Arithmetic functions

Logic functions

Recursion
Recursion

Loop

Semantics
Semantics

Theorems
Computability

Confluence

Shortcoming
Type problem

1.19

References

• “A Tutorial Introduction to the Lambda Calculus”, Raul Rojas.
• “A short introduction to the Lambda Calculus”, Achim Jung.
• “Lecture Notes on the Lambda Calculus”, Peter Selinger.
• “History of lambda-calculus and combinatory logic”, Felice

Cardone and J. Roger Hindley.
• http://www.csse.monash.edu.au/ lloyd/tildeFP/Lambda.

• http://www.wikipedia.org.


	Introduction
	Syntax
	Grammar
	Application

	Reduction
	Free and Bound
	Reduction Rules

	Lambda Calculus
	Numbers
	Arithmetic functions
	Logic functions

	Recursion
	Recursion
	Loop

	Semantics
	Semantics

	Theorems
	Computability
	Confluence

	Shortcoming
	Type Problem


