

Ordinals

Mustafa Elsheikh
elsheimm at mcmaster dot ca

Wed 18 Nov 2008

Ordinal Numbers

- First, second, third, fourth, ...

Ordinal Numbers

- Georg Cantor was the earliest to extend the counting numbers into infinity (Conway and Guy, 1996)
- Cantor's extension by introducing ordinal numbers:
0, 1, 2, ... , then $\omega, \omega+1, \omega+2, \dots$, then $\omega+\omega, \omega+\omega+1, \dots$
- Russell's definition of ordinal numbers in *Principia Mathematica* (Volume III, page 18):
"The name ordinal numbers is commonly confined to the relation-numbers of well-ordered series [...] the relation-numbers of series in general are commonly called order types". (Whitehead & Russell, 1925)

Well Order

- Well ordered sets: (Enderton, 1977)

Structure (A, \prec) is a well order if it is linear order with the property that every non-empty subset of **A** has a least element.

- Well ordering theorem (Keeping, 1959)

- Due to Zermelo.
 - "Every set can be well ordered".

Well Order (Examples)

- \mathbb{N} is in its natural order $<$ is well order
 $0 < 1 < 2 < \dots$
- \mathbb{Z} is not
 $\dots < -1 < 0 < 1 < \dots$
- but if \mathbb{Z} is reordered ($|x| \leq |y|$), is a well order
 $0, 1, -1, 2, -2, 3, -3 \dots$
- \mathbb{Z} in a different order is a well order
 $0 1 2 3 \dots ; -1 -2 -3 \dots$

Well Order (Meaning)

- Meaning of well order:

There is no infinitely decreasing sequence of elements

$$\dots < a_{(n-2)} < a_{(n-1)} < a_{(n)}$$

- More rigorously (Enderton, 1977):

There exists no $f: \mathbb{N} \rightarrow A$ such that $f(n^+) < f(n)$

Order Isomorphism

- Monotone (order-preserving) function (Stoll, 1963):
Let $f: X \rightarrow Y$, where (X, \lessdot_1) and (Y, \lessdot_2) be ordered sets. f is monotone iff: $x \lessdot_1 y$ implies $f(x) \lessdot_2 f(y)$
- Order isomorphism (Stoll, 1963):
 (X, \lessdot_1) and (Y, \lessdot_2) are called order isomorphic (ordinally similar) iff there is a bijective monotone function $f: X \rightarrow Y$
- Uniqueness theorem (Stoll, 1963):
If well-orders **A** and **B** are ordinally similar, then there exists a unique isomorphism between them.

Order Isomorphism (Examples)

- **A: $\{0, 1, 2, \dots\}$ and B: $\{0, 2, 4, 6, \dots\}$** are order isomorphic.
 - isomorphism $f(x) = 2x$
- **A: $\{0, 1, 2, \dots\}$ and B: $\{\dots, 2, 1, 0\}$** are not order isomorphic.
 - Proof: If for some $a \in A$, $f(a) = 0$, then $f(a) < f(a+1)$, i.e. $0 < f(a+1)$. This is a contradiction!
- **A: $\{0, 1, 2, \dots\}$ and B: $\{0, 1, 2, \dots, 0, 1, 2, \dots\}$** are not order isomorphic.
 - Proof: Again some $a \in A$ maps to $0 \in B$. Then there are infinitely many elements in A before a. Contradiction!

Order Type

- Term coined by Cantor (Quine, 1963)
- Russell called it relation-number (Russell, 2007 reprint)
-
- Order isomorphism is an equivalence relation on any collection of well ordered sets.
 - Reflexive: A is order isomorphic to itself
 - Symmetric: If f is monotone bijection, then so f^{-1}
 - Transitive: $f \circ g$ is bijection and monotone
- An equivalence class under order isomorphism is called an order type.

Ordinal Numbers Construction

- Numbers: 0, 1, 2, 3, ...
- What is 2?
- 2 is set of two elements: 0, 1

$$2 = \{0, 1\}, 1 = \{0\}, 0 = \{\}$$

- So:

$$0 = \{\}$$

$$1 = \{0\}$$

$$2 = \{0, 1\}$$

...

$$\omega = \{0, 1, 2, \dots\} = \mathbb{N}$$

- In general:

$$n = \{0, 1, \dots, n-1\}$$

$$n^+ = \{0, 1, \dots, n-1, n\} = n \cup \{n\}$$

Ordinal Numbers Construction

- von-Neumann construction by recursive definition (Halmos, 1960):

Zero ordinal: $0 = \{\}$

Successor ordinal: $n^+ = n \cup \{n\}$

Limit ordinal: $\alpha = \sup \{\beta : \beta < \alpha\} = \bigcup \{\beta : \beta < \alpha\}$

- Limit ordinal: has no immediate predecessor, i.e., there is no ordinal number β such that $\beta^+ = \alpha$
- Ordinal numbers are well ordered set:

$$0 \in 1 \in 2 \in 3 \in \dots$$

- Ordinals are well ordered by inclusion such that for any two ordinals α, β : $\alpha = \beta$ or $\alpha \in \beta$ or $\beta \in \alpha$

Ordinal Numbers Constr. (Examples)

$$0 = \{\}$$

$$1 = \{0\}$$

$$2 = \{0, 1\}$$

$$3 = \{0, 1, 2\}$$

...

$$\omega = \{0, 1, 2, \dots\} = \mathbb{N}$$

- ω : set of all finite ordinals
- ω : smallest infinite ordinal
- ω : first transfinite ordinal
- ω : first limit ordinal

Ordinal Numbers Describe Order Types

- Russell's definition of ordinal numbers in *Principia Mathematica* (Volume III, page 18):
"The name ordinal numbers is commonly confined to the relation-numbers of well-ordered series [...] the relation-numbers of series in general are commonly called order types" (Whitehead & Russell, 1925)
- Associated with every order type an ordinal number (canonical representation of the order type)
- Ordinal number is a set ordinally isomorphic to the order type class (Enderton, 1977)

Beyond infinity (transfinite ordinals)

$$\omega = \{0, 1, 2, \dots\}$$

$$\omega + 1 = \omega \cup \{\omega\} = \{0, 1, 2, \dots, \omega\}$$

$$\omega + 2 = \omega + 1 + 1 = \omega + 1 \cup \{\omega + 1\} = \{0, 1, 2, \dots, \omega, \omega + 1\}$$

...

$$\omega + \omega = \omega \cup \{\omega\} \cup \{\omega + 1\} \cup \{\omega + 2\} \dots = \{0, 1, 2, \dots, \omega, \omega + 1, \dots\} = \omega \cdot 2$$

$$\omega \cdot 2 + 1 = \{0, 1, 2, \dots, \omega, \omega + 1, \omega + 2, \dots, \omega \cdot 2\}$$

...

$$\omega \cdot 2 + \omega = \{0, 1, 2, \dots, \omega, \omega + 1, \omega + 2, \dots, \omega \cdot 2, \omega \cdot 2 + 1, \dots\} = \omega \cdot 3$$

...

$$\omega \cdot \omega = \{0, 1, 2, \dots, \omega, \dots, \omega \cdot 2, \dots, \omega \cdot 3, \dots\} = \omega^2$$

$$\omega^2 + 1 = \omega^2 \cup \{\omega\} = \{0, 1, 2, \dots, \omega, \dots, \omega \cdot 2, \dots, \omega \cdot 3, \dots, \omega^2\}$$

...

$$\omega^3, \dots, \omega^4, \dots, \omega^\wedge \omega, \dots, \dots, \omega^\wedge \omega^\wedge \omega, \dots, \varepsilon_0 = \omega^\wedge \omega^\wedge \omega^\wedge \dots$$

$$\varepsilon_0 + 1, \varepsilon_0 + 2, \dots$$

Beyond infinity (transfinite ordinals)

- We can always get a bigger ordinal (Conway and Guy, 1996)
- So far all ordinals are countable (cardinality = \aleph_0)
- ω_1 first uncountable ordinal (cardinality = \aleph_1) is the set of all countable cardinals

Ordinals vs Cardinals

- Ordinals measure the *length of well-ordered structure*
- Cardinals measure the *size of set regardless of structure*
- Example:

$$\omega < \omega + 1$$

$$\omega \approx \omega + 1 \approx \aleph_0$$

Ordinal Arithmetic

- Associative but not commutative (Lotfallah, 2007)

- Addition example:

$$\omega + 1 \neq 1 + \omega$$

- Why?

$$\omega + 1 = \{0, 1, 2, \dots, \omega\}$$

$$1 + \omega = \{1, 0, 1, 2, \dots\} = \omega$$

- Multiplication example:

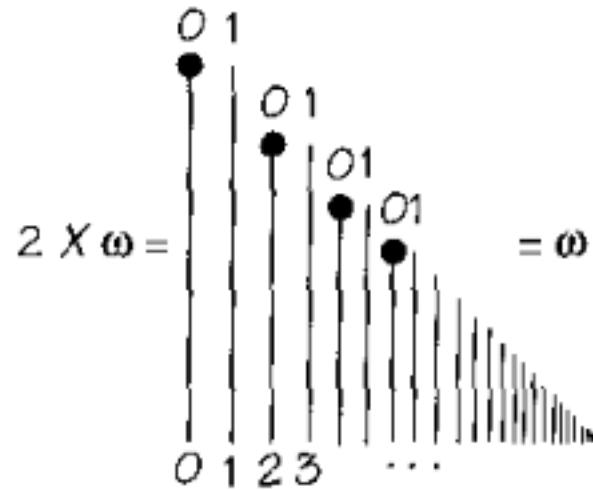
$$\omega \cdot 2 \neq 2 \cdot \omega$$

- Why?

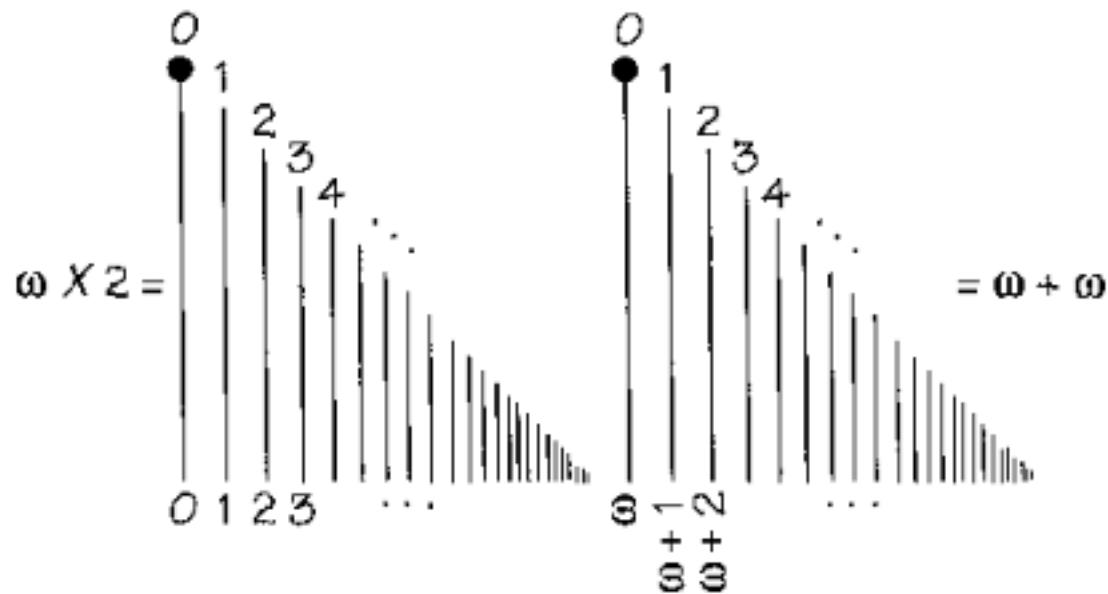
$$\omega \cdot 2 = \omega = \omega + \omega = \{0, 1, 2, \dots, \omega, \omega + 1, \dots\}$$

$$2 \cdot \omega = \{0, 1\} \times \omega = \{0, 1, 0, 1, \dots \text{ } \omega \text{ times}\} = \omega$$

Ordinal Arithmetic



$\omega \cdot 2 \neq 2 \cdot \omega$ from
(Conway and Guy,
1996)



Ordinal Arithmetic (Definition)

- Defined by recursion (Lotfallah, 2007)
- Addition $\alpha + \beta =$
 - base ($\beta = 0$): $\alpha + \beta = \alpha + 0 = \alpha$
 - succ ($\beta = \gamma + 1$): $\alpha + \beta = \alpha + \gamma + 1 = (\alpha + \gamma) \cup \{\alpha + \gamma\}$
 - limit ($\beta = \sup\{\gamma : \gamma < \beta\}$): $\alpha + \beta = \sup\{\alpha + \gamma : \gamma < \beta\}$
- Multiplication $\alpha \cdot \beta =$
 - base ($\beta = 0$): $\alpha \cdot \beta = \alpha \cdot 0 = 0$
 - succ ($\beta = \gamma + 1$): $\alpha \cdot \beta = \alpha \cdot (\gamma + 1) = (\alpha \cdot \gamma) + \alpha$
 - limit ($\beta = \sup\{\gamma : \gamma < \beta\}$): $\alpha \cdot \beta = \sup\{\alpha \cdot \gamma : \gamma < \beta\}$
- Exponentiation $\alpha^\beta =$
 - base ($\beta = 0$): $\alpha^\beta = \alpha^0 = 1$
 - succ ($\beta = \gamma + 1$): $\alpha^\beta = \alpha^\gamma \cdot \alpha = \alpha^\gamma \cdot \alpha$
 - limit ($\beta = \sup\{\gamma : \gamma < \beta\}$): $\alpha^\beta = \sup\{\alpha^\gamma : \gamma < \beta\}$

Bibliography

- Conway, J. H., & Guy, R. K. (1996). *The book of numbers* . New York: Copernicus
- Enderton, H. B. (1977). *Elements of set theory* . New York: Academic Press.
- Halmos, P. R. (1960). *Naive set theory* . The University series in undergraduate mathematics. Princeton, N.J.: Van Nostrand.
- Keeping, . (1959). A note on the well-ordering of sets. *Mathematics Magazine*, 33(1), 43. URL: <http://www.jstor.org/stable/3029469>
- Lotfallah, W. (2007): *Infinity and Beyond, A Short Course on the different concepts of Infinity in Mathematics* . The German University in Cairo.
- Quine, W., (1969). *Set Theory and Its Logic* . Cambridge: Belknap Press. Online via: Google Books Search
- Russell, B., (2007). *Introduction to Mathematical Philosophy* . City: Cosimo Classics. Online via: Google Books Search.
- Stoll, R. R. (1963). *Set theory and logic* . A Series of undergraduate books in mathematics. San Francisco: W.H. Freeman.
- Whitehead, A. N., & Russell, B. (1925). *Principia mathematica* . Cambridge [Eng.]: The University Press. URL: <http://name.udml.umich.edu/AAT3201.0003.001>