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Ordinal Numbers

e First, second, third, fourth, ...



Ordinal Numbers

e Georg Cantor was the earliest to extend the counting
numbers into infinity (Conway and Guy, 1996)

e Cantor's extension by introducing ordinal numbers:
0,1, 2,..,then w,w+1,w+2, ..., then w+w,w+w+1, ...

e Russell's definition of ordinal numbers in Principia
Mathematica (Volume lll, page 18):
"The name ordinal numbers is commonly confined to the
relation-numbers of well-ordered series [...] the relation-
numbers of series in general are commonly called order
types". (Whitehead & Russell, 1925)



Well Order

e Well ordered sets: (Enderton, 1977)
Structure (A,<) is a well order if it is linear order with the
property that every non—empty subset of A has a least
element.

e Well ordering theorem (Keeping, 1959)
- Due to Zermelo.
- "Every set can be well ordered".



Well Order (Examples)

e [\ is in its natural order < is well order
0<1<2<...

® Z i1s not
LL.<-1<0<1<..

e but if Z is reordered (|X| £ |y|), is a well order
0,1,-1, 2, -2, 3, -3 ...
in a different order is a well order

Z1n a
0123...;-1-2-3...



Well Order (Meaning)

e Meaning of well order:
There is no infinitely decreasing sequence of elements
... < am-2 < amn-n < amn

e More rigorously (Enderton, 1977):
There exists no f: 1 — A such that f(n*) < f(n)



Order Isomorphism

e Monotone (order-preserving) function (Stoll, 1963):
Let f:X—Y, where (X, <) and (Y, <2) be ordered sets. fis
monotone iff: x <i y implies f(x) <2 f(y)

e Order isomorphism (Stoll, 1963):

(X, <1) and (Y, <2) are called order isomorphic (ordinally similar)
iff there is a bijective monotone function f: X - Y

e Uniqueness theorem (Stoll, 1963):
If well-orders A and B are ordinally similar, then there exists
a unique isomorphism between them.



Order Isomorphism (Examples)

o A: {0,1,2,...} and B: {0, 2, 4, 6, ...} are order isomorphic.
- isomorphism f(x) = 2x

o A:{0,1,2, ...} and B: {..., 2, 1, 0} are not order isomorphic.
- Proof: If for some a € A, f(a) = 0, then f(a) < f(a+1) ,i.e. 0 <
f(a+1) . This is a contradiction!

o A:{0,1,2,...}and B: {0,1,2,...,0,1, 2, ...} are not order
Isomorphic.
- Proof: Again some a € A maps to 0 € B. Then there are
infinitely many elements in A before a. Contradiction!



Order Type

e Term coined by Cantor (Quine, 1963)
e Russell called it relation-number (Russell, 2007 reprint)
®
e Order isomorphism is an equivalence relation on any
collection of well ordered sets.
- Reflexive: A is order isomorphic to itself
- Symmetric: If f is monotone bijection, then so f™
- Transitive: f ° g is bijection and monotone

e An equivalence class under order isomorphism is called an
order type.



Ordinal Numbers Construction

e Numbers: 0, 1, 2, 3, ...
e What is 27
e 2 is set of two elements: 0, 1
2={0,1},1={0},0={}
e SO:
0={}
1={0}
2={0,1}

w={0,1,2,..}=NK

e [n general:
n={0,1, ..., n1}
n"={0,1,...n-1,nf=n U {n}



Ordinal Numbers Construction

e von-Neumann construction by recursive definition (Halmos,
1960):
Zero ordinal: 0 = {}
Successor ordinal: n* =n U {n}
Limit ordinal: a=sup {B: B<a}=U {B: B < a}

e Limit ordinal: has no immediate predecessor, i.e., there is
no ordinal number 8 such that " = «

e Ordinal numbers are well ordered set:

0ele2e3e..

e Ordinals are well ordered by inclusion such that for any two

ordinalsa,B:a=Borac€ S or B € «



Ordinal Numbers Constr. (Examples)

0={}

1 ={0}

2 ={0, 1)
3=1{0, 1, 2)

w={0,1,2, .}=N

e W: set of all finite ordinals
e W: smallest infinite ordinal
e W: first transfinite ordinal
e W: first limit ordinal



Ordinal Numbers Describe Order Types

e Russell's definition of ordinal numbers in Principia
Mathematica (Volume lll, page 18):
"The name ordinal numbers is commonly confined to the
relation-numbers of well-ordered series [...] the relation-
numbers of series in general are commonly called order

types" (Whitehead & Russell, 1925)

e Associated with every order type an ordinal number
(canonical representation of of the order type)
e Ordinal number is a set ordinally isomorphic to the order

type class (Enderton, 1977)



Beyond infinity (transfinite ordinals)

w ={0,1,2,...}
w+1=wU{w}={0,1,2,...,w}
w+2=w+t1+1=w+1 U {w+1} ={0,1,2,...,w,w+1}

w+w=wU{w}U{w+t1} U{w+2}..={0,12,...,w,w+1,...} = w.2
w.2+1={0,1,2,...,w,w+1,w+2,...,w.2}

w.2+w={0,1,2,...,0,w+1T,w+2,...,w.2,w.2+1,...} = W.3

w.w={0,1,2,...,w,...,0.2,...,w.3,...} = W?
w*+1=w?*U{w}={0,1,2,...,w,...,0.2,...,w.3,...,w%

W .. WL, wWwW, e, e, WWW, ., E =W W W
otl, €012, ...



Beyond infinity (transfinite ordinals)

e \We can always get a bigger ordinal (Conway and Guy,
1996)

e So far all ordinals are countable (cardinality = Ko )

e w: first uncountable ordinal (cardinality = R+ ) is the set of all
countable cardinals



Ordinals vs Cardinals

e Ordinals measure the length of well-ordered structure
e Cardinals measure the size of set regardless of structure
e Example:

w < wW+1

wW=wt+l =Roe



Ordinal Arithmetic

e Associative but not commutative (Lotfallah, 2007)

e Addition example:
w+1 #1+w

o Why?
w+1={0,1,2,...,w}
1+w ={1,0,12,..} = w

e Multiplication example:
W.2#%2.Ww

o Why?
w.2=w=w+tw={0,1,2,...,w,w+1,...}
2.0 ={0,1}xw = {0,1,01 .. wtimes}=w



Ordinal Arithmetic
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Ordinal Arithmetic (Definition)

e Defined by recursion (Lotfallah, 2007)
e Addition a+f3 =

-base (B=0):a+f=a+0=aqa

- succ (B = y+1): a+p = a+y+1 = (a+y) U {a+y}

- limit (B = sup{y:y<B}): a+p = sup{a+y:y<@}
e Multiplication a.3 =

-base (=0):a.=0a.0=0

-succ (B =y+1): a.p =a.(y+1) = (a.y)+a

- limit (8 = sup{y:y<B}): a.p = sup{a.y:y<f}
e Exponentiation a’f3 =

-base (B =0): a3 =00 =1

- succ (B =y+1): aB = ay+1) = a’'y.a

- limit (B = sup{y:y<P}): a”p = sup{a”y:y<f}
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