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Ordinal Numbers

First, second, third, fourth, ...



Ordinal Numbers

Georg Cantor was the earliest to extend the counting 
numbers into infinity (Conway and Guy, 1996)
Cantor's extension by introducing ordinal numbers:
0, 1, 2, ... , then ω,ω+1,ω+2, ... , then ω+ω,ω+ω+1, ...

 
Russell's definition of ordinal numbers in Principia 
Mathematica (Volume III, page 18):
"The name ordinal numbers is commonly confined to the 
relation-numbers of well-ordered series [...] the relation-
numbers of series in general are commonly called order 
types". (Whitehead & Russell, 1925)



Well Order

Well ordered sets: (Enderton, 1977)
Structure (A,≺) is a well order if it is linear order with the 
property that every non-empty subset of A has a least 
element.
 
Well ordering theorem (Keeping, 1959)
- Due to Zermelo.
- "Every set can be well ordered".



Well Order (Examples)

ℕ is in its natural order < is well order
0 < 1 < 2 < ...
 
ℤ is not
... < -1 < 0 < 1 < ...
but if ℤ is reordered (|x| ≤ |y|), is a well order
0, 1, -1, 2, -2, 3, -3 ...
ℤ in a different order is a well order
0 1 2 3 ... ; -1 -2 -3 ... 



Well Order (Meaning)

Meaning of well order:
There is no infinitely decreasing sequence of elements
... < a₍n₋₂₎ ≺  a₍n₋₁₎ ≺  a₍n₎

More rigorously (Enderton, 1977): 
There exists no f: ℕ → A  such that f(n⁺) ≺ f(n)



Order Isomorphism

Monotone (order-preserving) function (Stoll, 1963):
Let f:X→Y, where (X, ≺₁) and (Y, ≺₂) be ordered sets. f is 
monotone iff: x ≺₁ y implies f(x) ≺₂ f(y)

 
Order isomorphism (Stoll, 1963):
(X, ≺₁) and (Y, ≺₂) are called order isomorphic (ordinally similar) 
iff there is a bijective monotone function f: X → Y

 
Uniqueness theorem (Stoll, 1963):
If well-orders A and B are ordinally similar, then there exists 
a unique isomorphism between them.
 



Order Isomorphism (Examples)

A: {0, 1, 2, ...} and B: {0, 2, 4, 6, ...} are order isomorphic.
- isomorphism f(x) = 2x

A: {0, 1, 2, ...} and B: {..., 2, 1, 0} are not order isomorphic.
- Proof: If for some a ∊ A , f(a) = 0, then f(a) ≺ f(a+1) , i.e. 0 ≺ 
f(a+1) . This is a contradiction!

A: {0, 1, 2, ...} and B: {0, 1, 2, ... , 0, 1, 2, ...} are not order 
isomorphic.
- Proof: Again some a ∊ A  maps to 0 ∊ B . Then there are 
infinitely many elements in A before a. Contradiction!



Order Type

Term coined by Cantor (Quine, 1963)
Russell called it relation-number (Russell, 2007 reprint)
  
Order isomorphism is an equivalence relation on any 
collection of well ordered sets.
- Reflexive: A is order isomorphic to itself
- Symmetric: If f is monotone bijection, then so f‾¹
- Transitive: f ∘ g  is bijection and monotone
 
An equivalence class under order isomorphism is called an 
order type. 



Ordinal Numbers Construction

Numbers: 0, 1, 2, 3, ...
What is 2?
2 is set of two elements: 0, 1
2 = {0, 1}, 1 = {0}, 0 = {}
So:
0 = {}
1 = {0}
2 = {0, 1}
...
ω = {0, 1, 2, ...} = ℕ 
In general:
n = {0, 1, ... , n-1}
n⁺ = {0, 1, ..., n-1, n} = n ∪ {n}



Ordinal Numbers Construction

von-Neumann construction by recursive definition (Halmos, 
1960):
Zero ordinal: 0 = {}             
Successor ordinal: n⁺ = n ∪ {n}
Limit ordinal: α = sup {β: β < α} = ∪ {β: β < α}
Limit ordinal: has no immediate predecessor, i.e., there is 
no ordinal number β such that β⁺ = α  
Ordinal numbers are well ordered set:

            0 ∊ 1 ∊ 2 ∊ 3 ∊ ... 
Ordinals are well ordered by inclusion such that for any two 
ordinals α, β: α = β or α ∊ β or β ∊ α



Ordinal Numbers Constr. (Examples)

0 = {}
1 = {0}
2 = {0, 1}
3 = {0, 1, 2}
...
ω = {0, 1, 2, ...} = ℕ

 
ω: set of all finite ordinals 
ω: smallest infinite ordinal 
ω: first transfinite ordinal
ω: first limit ordinal 



Ordinal Numbers Describe Order Types

Russell's definition of ordinal numbers in Principia 
Mathematica (Volume III, page 18):
"The name ordinal numbers is commonly confined to the 
relation-numbers of well-ordered series [...] the relation-
numbers of series in general are commonly called order 
types" (Whitehead & Russell, 1925)

Associated with every order type an ordinal number 
(canonical representation of of the order type)
Ordinal number is a set ordinally isomorphic to the order 
type class (Enderton, 1977)



Beyond infinity (transfinite ordinals)

ω = {0,1,2,...} 
ω + 1 = ω U {ω} = {0,1,2,...,ω}
ω + 2 = ω+1 + 1 = ω+1 U {ω+1} = {0,1,2,...,ω,ω+1}
...
ω + ω = ω U {ω} U {ω+1} U {ω+2} ... = {0,1,2,...,ω,ω+1,...} = ω.2
ω.2 + 1 = {0,1,2,...,ω,ω+1,ω+2,...,ω.2}
...
ω.2 + ω = {0,1,2,...,ω,ω+1,ω+2,...,ω.2,ω.2+1,...} = ω.3
...
ω.ω = {0,1,2,...,ω,...,ω.2,...,ω.3,...} = ω²
ω² + 1 = ω² U {ω} = {0,1,2,...,ω,...,ω.2,...,ω.3,...,ω²}
...
ω³, ... ,ω⁴, ... , ω^ω, ... , ... , ω^ω^ω , ... , ε₀ = ω^ω^ω^...
ε₀+1, ε₀+2, ...



Beyond infinity (transfinite ordinals)

We can always get a bigger ordinal (Conway and Guy, 
1996) 

 
So far all ordinals are countable (cardinality = ℵℴ )

 
ω₁ first uncountable ordinal (cardinality = ℵ₁ ) is the set of all 
countable cardinals



Ordinals vs Cardinals

Ordinals measure the length of well-ordered structure
 

Cardinals measure the size of set regardless of structure
 

Example:
 

ω ≺ ω+1
 
ω ≈ ω+1 ≈ ℵℴ



Ordinal Arithmetic

Associative but not commutative (Lotfallah, 2007)
 

Addition example:
ω+1 ≠ 1+ω
Why? 
ω+1 = {0,1,2,...,ω}
1+ω = {1,0,1,2,...} = ω

 
Multiplication example: 
ω.2 ≠ 2.ω
Why? 
ω.2 = ω = ω+ω = {0,1,2,...,ω,ω+1,...}
2.ω = {0,1}×ω =  {0,1, 0,1 ,... ω times} = ω

 



Ordinal Arithmetic

ω.2 ≠ 2.ω from 
(Conway and Guy, 
1996) 



Ordinal Arithmetic (Definition)

Defined by recursion (Lotfallah, 2007) 
Addition α+β =
- base (β = 0): α+β = α+0 = α
- succ (β = γ+1): α+β = α+γ+1 = (α+γ) U {α+γ}
- limit (β = sup{γ:γ<β}): α+β = sup{α+γ:γ<β}
Multiplication α.β =
- base (β = 0): α.β = α.0 = 0
- succ (β = γ+1): α.β = α.(γ+1) = (α.γ)+α
- limit (β = sup{γ:γ<β}): α.β = sup{α.γ:γ<β}
Exponentiation α^β =
- base (β = 0): α^β = α^0 = 1
- succ (β = γ+1): α^β = α^(γ+1) = α^γ.α
- limit (β = sup{γ:γ<β}): α^β = sup{α^γ:γ<β}
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