- —

-‘s'?—‘ ——

r_;?:‘c‘.'.?.s x
e
o =

—

gic Progr
using

PROLOG

What is PROLOG?

Its a way of programming using logical statements. It's the
mMost common logic programming language around.

There are several implementations of PROLOG
d SWI PROLOG
hitp://www.swi-prolog.org/
d Turbo PROLOG
hitp://www.fraber.de/university/prolog/tprolog.html
d Micro PROLOG
http://www.lpa.co.uk/dow_fre.ntm

O Visual PROLOG

hitp://www.visual-prolog.com/

They have some differences in syntax.

PROLOG Syntax 1/3

We have two kinds of statements in PROLOG.
1 - FACTS (or the Knowledge Bases)

Like “Jim is a child.”
O In PROLOG we write “child(jim).”

“Joe Is father of Jim.”
O father(joe, jim).

“Jill s mother of Jim”
O mother(jill, jim).

PROLOG Syntax (cont.) 2/3

2 — RULES

Like “A parent is either a father or mother.”
O parent(X,Y) :- father(X,Y); mother(X,Y).
“:" is the logical disjunction OR

“Two persons are siblings if they have the same parents.”
O siblings(X,Y) :- parent(Parent X),parent(Parent,Y).
Y7 1s the logical conjunction AND

AS you can nofice variables are in Uppercase. They need 1o
start with a Uppercase lefter or ¥_". Like "“Parent” or “_parent” .

PROLOG Syntax (cont.) 3/3

We call these clauses in logic Horn Clauses.
Not all FOL statements can be said this way.

Even thou, PROLOG has its limitations a lot of Al algorithms
ike Expert Systems, Heuristic Searches, Constraint
Satisfaction Problems, and ... can be easily implemented
using PROLOG.

A test program 1/3

Here are the FACTS of my program.
child(jim).

father(joe, jim).

mother(jill, jim).

child(jan).

father(joe, jan).

mother(jill, jan).

A test program (cont.) 2/3

After loading the file in PROLOG. We can ask questions
from PROLOG like:

O s |joe is the father of jim?e
efather(joe, jim).

O Who is the father of jim?¢
efather(X,jim).

O Whom motheris jille
emother(jill, X).

You can use . and ; to answer the questions.

A test program (cont.) 3/3

We can add some rules to our program.
O parent(X,Y) :- father(X,Y): mother(X,Y).
O siblings(X,Y) :- parent(Parent,X),parent(Parent,Y).

And we can ask questions from if:

O “"Who are the parents of jang”
?parent(X,jan).

O “Who are siblings to each othere”
?siblings(X,Y).

Recursive Rules

We can have recursive rules in our program.

For example in natural numbers we can say “successor of
a number is also a number.”

O numeral(succ(X)):-numeral(X).

O We should add the fact numeral(0). also to the program in
order for it fo start working. Because we simply need
something to start from.

(Jason Utt, 2005)

The equality symbol “=" in PROLOG is not like the equality
symbol in logic.

The equality symbol in PROLOG is used to unify two terms.

parent(X,tom)=parent(jim,Y).

How PROLOG works

PROLOG uses the backward chaining process.

It starts from the entered statement and tries to go through
branches of possible answers that is made by rules using Depth
First Search Algorithm.

PROLOG uses a lot of technigues to make the process more
and more efficient.

You can find more about this in Chapter 9 of “Artificial
Intelligence: A Modern Approach” by Russell and Norving 2003

|

| |

] Unification]

Extending PROLOG

PROLOG Technology Theorem Prover, or PTTP (Stickel,
1988) Is a sound and complete theorem prover. They took
the PROLOG compiler and extend it such that, it can be
used as a sound and complete reasoner for full First Order
Logic. (Russell, 2003)

In PTTP you can use all of the FOL statements but it has ifs
own deficiencies.

References

Artificial Infelligence: A Modern Approach, Second
Edition, Stuart J. Russell and Peter Norving, 2003

PROLOG versus You, An Introduction to Logic
Programming, A.-L. Johansson, A. Eriksson-Granskog, A.

Edman, 1989

hitp://www.ims.uni-
stuttgart.de/~uttin/prolog/lpn/3.1.3%20Example %203 %20
Successor.pdf (Jason Utt, 2005)

http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf

