
PROLOG

Logic Programming

using

Amir Tavasoli

What is PROLOG?

 Its a way of programming using logical statements. It’s the
most common logic programming language around.

 There are several implementations of PROLOG

 SWI PROLOG
 http://www.swi-prolog.org/

 Turbo PROLOG
 http://www.fraber.de/university/prolog/tprolog.html

 Micro PROLOG

 http://www.lpa.co.uk/dow_fre.htm

 Visual PROLOG

 http://www.visual-prolog.com/

 They have some differences in syntax.

PROLOG Syntax 1/3

 We have two kinds of statements in PROLOG.

1 – FACTS (or the Knowledge Bases)

 Like “Jim is a child.”

 In PROLOG we write “child(jim).”

 “Joe is father of Jim.”

 father(joe, jim).

 “Jill is mother of Jim”

 mother(jill, jim).

PROLOG Syntax (cont.) 2/3

2 – RULES

 Like “A parent is either a father or mother.”

 parent(X,Y) :- father(X,Y); mother(X,Y).

 “;” is the logical disjunction OR

 “Two persons are siblings if they have the same parents.”

 siblings(X,Y) :- parent(Parent,X),parent(Parent,Y).

 “,” is the logical conjunction AND

 As you can notice variables are in Uppercase. They need to
start with a Uppercase letter or “_”. Like “Parent” or “_parent” .

PROLOG Syntax (cont.) 3/3

 We call these clauses in logic Horn Clauses.

 Not all FOL statements can be said this way.

 Even thou, PROLOG has its limitations a lot of AI algorithms

like Expert Systems, Heuristic Searches, Constraint

Satisfaction Problems, and … can be easily implemented

using PROLOG.

A test program 1/3

 Here are the FACTS of my program.

 child(jim).

 father(joe, jim).

 mother(jill, jim).

 child(jan).

 father(joe, jan).

 mother(jill, jan).

A test program (cont.) 2/3

 After loading the file in PROLOG. We can ask questions

from PROLOG like:

 Is joe is the father of jim?

 ?father(joe, jim).

 Who is the father of jim?

 ?father(X,jim).

 Whom mother is jill?

 ?mother(jill, X).

 You can use . and ; to answer the questions.

A test program (cont.) 3/3

 We can add some rules to our program.

 parent(X,Y) :- father(X,Y); mother(X,Y).

 siblings(X,Y) :- parent(Parent,X),parent(Parent,Y).

 And we can ask questions from it:

 “Who are the parents of jan?”

 ?parent(X,jan).

 “Who are siblings to each other?”

 ?siblings(X,Y).

Recursive Rules

 We can have recursive rules in our program.

 For example in natural numbers we can say “successor of

a number is also a number.”

 numeral(succ(X)):-numeral(X).

 We should add the fact numeral(0). also to the program in

order for it to start working. Because we simply need

something to start from.

 (Jason Utt, 2005)

Unification

 The equality symbol “=“ in PROLOG is not like the equality

symbol in logic.

 The equality symbol in PROLOG is used to unify two terms.

 parent(X,tom)=parent(jim,Y).

How PROLOG works

 PROLOG uses the backward chaining process.

 It starts from the entered statement and tries to go through

branches of possible answers that is made by rules using Depth

First Search Algorithm.

 PROLOG uses a lot of techniques to make the process more

and more efficient.

 You can find more about this in Chapter 9 of “Artificial

Intelligence: A Modern Approach” by Russell and Norving 2003

Parent Tree

Unification

Extending PROLOG

 PROLOG Technology Theorem Prover, or PTTP (Stickel,

1988) is a sound and complete theorem prover. They took

the PROLOG compiler and extend it such that, it can be

used as a sound and complete reasoner for full First Order

Logic. (Russell, 2003)

 In PTTP you can use all of the FOL statements but it has its

own deficiencies.

References

 Artificial Intelligence: A Modern Approach, Second

Edition, Stuart J. Russell and Peter Norving, 2003

 PROLOG versus You, An Introduction to Logic

Programming, A.-L. Johansson, A. Eriksson-Granskog, A.

Edman, 1989

 http://www.ims.uni-

stuttgart.de/~uttjn/prolog/lpn/3.1.3%20Example%203_%20

Successor.pdf (Jason Utt, 2005)

http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf
http://www.ims.uni-stuttgart.de/~uttjn/prolog/lpn/3.1.3 Example 3_ Successor.pdf

