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Background

• Motivation

– How do you compare sizes of all sets (finite or infinite)?

– Well, what if it is difficult to exhibit this bijection?

– Also, is it possible to have an order relation on the cardinal numbers?

• Theorem Statement

The Schroeder-Bernstein Theorem. For any sets A, B

∃ f : A → B | f is a total, injective function

∧
∃ g : B → A, | g is a total, injective function







⇒ ∃ h : A → B | h is a bijection

Note: given that the hypothesis holds, this theorem concludes that a bijec-
tion must exist, but does not produce this bijection

• Alternative Theorem Statement Form (just uses defined symbols <, ≈, | · |)

The Schroeder-Bernstein Theorem. For any sets A, B

|A| < |B| ∧ |B| < |A| ⇒ |A| ≈ |B|

• This theorem is the ”missing piece” (antisymmetry) in the definition of
partial order applied to the cardinality of sets (reflexivity, transitivity are
trivial)

• The value of this theorem lies in its application to infinite sets (result is
trivial for finite sets since the hypothesis forces the sets A and B to have
the same number of elements)

• In some people’s opinion ”this theorem is one of the first significant results
in set theory”

• Other names include Cantor-Bernstein, Cantor-Schroeder-Bernstein

– Name reflects authors: Georg Cantor, Felix Bernstein, Ernst Schroder

– Bernstein (incorrectly) (1898) proved this theorem

– Cantor (incorrectly) proved (1897) this theorem using the Axiom of
Choice

– Schroeder proved this theorem (1898) without relying on the Axiom
of Choice

• Multiple proof strategies and multiple proofs using each strategy exist:

– The proof in this presentation uses the Fixed Point Theorem

∗ non-constructive (the proof does not show you how you can ac-
tually construct a bijection h)

∗ reference: G. Hardegree, ”Set Theory”, Chapter 5, pages 10-11,
http://people.umass.edu/gmhwww/595/text.htm
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Helper Results

Fixed Point Theorem. 1 For any set A, for any total function f : P(A) →
P(A)

(∀X, Y | X, Y ∈ P(A) : (X ⊆ Y ⇒ f(X) ⊆ f(Y )) ⇒ (∃Z | Z ⊆ A : f(Z) = Z)

Lemma 1. For any sets A, B, for any paritions (A1, A2), (B1, B2) of A, B,

respectively

∃ f1 : A1 → B1 | f1 is a bijection

∧
∃ f2 : A2 → B2, | f2 is a bijection







⇒ ∃ h : A → B | h is a bijection

Proof. Define h : A → B as follows: if x ∈ A1 ⇒ h(x) := f1(x) and if x ∈ A2 ⇒
h(x) := f2(x). Clearly, h is a bijection.

Lemma 2. For any set A, for any X, Y ⊆ A

X ⊆ Y ⇒ A − Y ⊆ A − X

Proof. Let X ⊆ Y . If x ∈ A − Y ⇒ x ∈ A ∧ ¬(x ∈ Y ) ⇒ x ∈ A ∧ ¬(x ∈ X)(∵
X ⊆ Y ) ⇒ x ∈ A − X .

Lemma 3. For any set A, for any X, Y ⊆ A, for any total function f : A → A

X ⊆ Y ⇒ Rf (X) ⊆ Rf (Y )

Proof. Let X ⊆ Y . Let b ∈ Rf (X) ⇒ (∃a|a ∈ X : f(a) = b) ⇒ (∃a|a ∈ Y :
f(a) = b)(∵ X ⊆ Y ) ⇒ b ∈ Rf (Y ).

Corollary 1. For any sets A, B, for any total functions f : A → B, g : B → A,

for any X, Y ⊆ A

X ⊆ Y ⇒ Rg(B − Rf (A − X)) ⊆ Rg(B − Rf (A − Y ))

Proof. Assume X ⊆ Y

⇒ A − Y ⊆ A − X (by Lemma 2)
⇒ Rf (A − Y ) ⊆ Rf (A − X) (by Lemma 3)
⇒ B − Rf (A − X) ⊆ B − Rf (A − Y ) (by Lemma 2)
⇒ Rg(B − Rf (A − X)) ⊆ Rg(B − Rf (A − Y )) (by Lemma 3)

Lemma 4. For any sets A, B, for any total function f : A → B

f is injective ∧ X ⊆ Df ⇒ ∃h : X → Rf (X) | h is a bijection

Proof. Define h : X → Rf (X) as follows: (∀x|x ∈ X : h(x) := f(x)). f total
∧X ⊆ Df ⇒ h total. Since f is injective function, thus h is injective function.
Lastly, let b ∈ Rf (X) ⇒ (∃a|a ∈ X : f(a) = b) ⇒ (∃a|a ∈ X : h(a) = b) ⇒ h is
surjective.

1see reference for proof
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A Proof

The Schroeder-Bernstein Theorem. For any sets A, B

∃ f : A → B | f is a total, injective function

∧
∃ g : B → A, | g is a total, injective function







⇒ ∃ h : A → B | h is a bijection

Proof.1

2

• Assume the hypothesis.3

4

• Construct F : P(A) → P(A) where5

F (X) := Rg(B − Rf (A − X))

Note: F is a function (∵ X = Y ⇒ Rg(B −Rf (A−X)) = Rg(B −Rf (A−6

Y ))).7

Note: F is total (∵ ∀X ∈ P(A) ∃Rg(B − Rf (A − X))) ∈ P(A)).8

• Choose any X1, X2 ∈ P(A) such that X1 ⊆ X29

10

⇒ F (X1) = Rg(B − Rf (A − X1)) ⊆ Rg(B − Rf (A − X2)) = F (X2)11

(by Corollary 1)12

13

⇒ ∃Z ∈ P(A) | F (Z) = Rg(B − Rf (A − Z)) = Z (by F.P.T.).14

15

• Since f total, injective function and A−Z ⊆ Df (∵ A−Z ⊆ A∧ f total)16

17

⇒ ∃ bijection h1 : A − Z → Rf (A − Z) (by Lemma 4).18

19

• Since g total, injective function and B −Rf (A−Z) ⊆ Dg (∵ B −Rf (A−20

Z) ⊆ B ∧ g total)21

22

⇒ ∃ bijection h2 : B − Rf (A − Z) → Rg(B − Rf (A − Z)) (by Lemma23

4)24

25

⇒ ∃ bijection h2 : B − Rf (A − Z) → Z (∵ Rg(B − Rf (A − Z)) = Z).26

27

• Lastly,28

Since (A − Z, Z) is a partition of A29

and (B − Rf (A − Z), Rf (A − Z)) is a partition of B30

⇒ ∃h : A → B | h is a bijection (by Lemma 1)31

32
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