
A proof of the Schroeder-Bernstein Theorem

CAS 701: Logic and Discrete Mathematics in Software Engineering

Christopher Kulbakas

November 20, 2008

Department of Computing and Software
McMaster University

Background

- Motivation
 - How do you compare sizes of all sets (finite or infinite)?
 - Well, what if it is difficult to exhibit this bijection?
 - Also, is it possible to have an order relation on the cardinal numbers?
- Theorem Statement

The Schroeder-Bernstein Theorem. *For any sets A, B*

$$\left. \begin{array}{c} \exists f : A \rightarrow B \mid f \text{ is a total, injective function} \\ \wedge \\ \exists g : B \rightarrow A, \mid g \text{ is a total, injective function} \end{array} \right\} \Rightarrow \exists h : A \rightarrow B \mid h \text{ is a bijection}$$

Note: given that the hypothesis holds, this theorem concludes that a bijection must exist, but does not produce this bijection

- Alternative Theorem Statement Form (just uses defined symbols $\succsim, \approx, |\cdot|$)

The Schroeder-Bernstein Theorem. *For any sets A, B*

$$|A| \succsim |B| \wedge |B| \succsim |A| \Rightarrow |A| \approx |B|$$

- This theorem is the "missing piece" (antisymmetry) in the definition of partial order applied to the cardinality of sets (reflexivity, transitivity are trivial)
- The value of this theorem lies in its application to infinite sets (result is trivial for finite sets since the hypothesis forces the sets A and B to have the same number of elements)
- In some people's opinion "this theorem is one of the first significant results in set theory"
- Other names include Cantor-Bernstein, Cantor-Schroeder-Bernstein
 - Name reflects authors: Georg Cantor, Felix Bernstein, Ernst Schröder
 - Bernstein (incorrectly) (1898) proved this theorem
 - Cantor (incorrectly) proved (1897) this theorem using the Axiom of Choice
 - Schröder proved this theorem (1898) without relying on the Axiom of Choice
- Multiple proof strategies and multiple proofs using each strategy exist:
 - The proof in this presentation uses the Fixed Point Theorem
 - * non-constructive (the proof does not show you how you can actually construct a bijection h)
 - * reference: G. Hardegree, "Set Theory", Chapter 5, pages 10-11, <http://people.umass.edu/gmhwww/595/text.htm>

Helper Results

Fixed Point Theorem. ¹ For any set A , for any total function $f : \mathcal{P}(A) \rightarrow \mathcal{P}(A)$

$$(\forall X, Y \mid X, Y \in \mathcal{P}(A) : (X \subseteq Y \Rightarrow f(X) \subseteq f(Y)) \Rightarrow (\exists Z \mid Z \subseteq A : f(Z) = Z)$$

Lemma 1. For any sets A, B , for any partitions $(A_1, A_2), (B_1, B_2)$ of A, B , respectively

$$\left. \begin{array}{l} \exists f_1 : A_1 \rightarrow B_1 \mid f_1 \text{ is a bijection} \\ \wedge \\ \exists f_2 : A_2 \rightarrow B_2, \mid f_2 \text{ is a bijection} \end{array} \right\} \Rightarrow \exists h : A \rightarrow B \mid h \text{ is a bijection}$$

Proof. Define $h : A \rightarrow B$ as follows: if $x \in A_1 \Rightarrow h(x) := f_1(x)$ and if $x \in A_2 \Rightarrow h(x) := f_2(x)$. Clearly, h is a bijection. \square

Lemma 2. For any set A , for any $X, Y \subseteq A$

$$X \subseteq Y \Rightarrow A - Y \subseteq A - X$$

Proof. Let $X \subseteq Y$. If $x \in A - Y \Rightarrow x \in A \wedge \neg(x \in Y) \Rightarrow x \in A \wedge \neg(x \in X)$ ($\because X \subseteq Y \Rightarrow x \in A - X$). \square

Lemma 3. For any set A , for any $X, Y \subseteq A$, for any total function $f : A \rightarrow A$

$$X \subseteq Y \Rightarrow R_f(X) \subseteq R_f(Y)$$

Proof. Let $X \subseteq Y$. Let $b \in R_f(X) \Rightarrow (\exists a \mid a \in X : f(a) = b) \Rightarrow (\exists a \mid a \in Y : f(a) = b)$ ($\because X \subseteq Y \Rightarrow b \in R_f(Y)$). \square

Corollary 1. For any sets A, B , for any total functions $f : A \rightarrow B, g : B \rightarrow A$, for any $X, Y \subseteq A$

$$X \subseteq Y \Rightarrow R_g(B - R_f(A - X)) \subseteq R_g(B - R_f(A - Y))$$

Proof. Assume $X \subseteq Y$

$$\Rightarrow A - Y \subseteq A - X \text{ (by Lemma 2)}$$

$$\Rightarrow R_f(A - Y) \subseteq R_f(A - X) \text{ (by Lemma 3)}$$

$$\Rightarrow B - R_f(A - X) \subseteq B - R_f(A - Y) \text{ (by Lemma 2)}$$

$$\Rightarrow R_g(B - R_f(A - X)) \subseteq R_g(B - R_f(A - Y)) \text{ (by Lemma 3)} \quad \square$$

Lemma 4. For any sets A, B , for any total function $f : A \rightarrow B$

$$f \text{ is injective} \wedge X \subseteq D_f \Rightarrow \exists h : X \rightarrow R_f(X) \mid h \text{ is a bijection}$$

Proof. Define $h : X \rightarrow R_f(X)$ as follows: $(\forall x \mid x \in X : h(x) := f(x))$. f total $\wedge X \subseteq D_f \Rightarrow h$ total. Since f is injective function, thus h is injective function. Lastly, let $b \in R_f(X) \Rightarrow (\exists a \mid a \in X : f(a) = b) \Rightarrow (\exists a \mid a \in X : h(a) = b) \Rightarrow h$ is surjective. \square

¹see reference for proof

A Proof

The Schroeder-Bernstein Theorem. *For any sets A, B*

$$\left. \begin{array}{l} \exists f : A \rightarrow B \mid f \text{ is a total, injective function} \\ \quad \wedge \\ \exists g : B \rightarrow A, \mid g \text{ is a total, injective function} \end{array} \right\} \Rightarrow \exists h : A \rightarrow B \mid h \text{ is a bijection}$$

1 *Proof.*

2

3 • Assume the hypothesis.

4

5 • Construct $F : \mathcal{P}(A) \rightarrow \mathcal{P}(A)$ where

$$F(X) := R_g(B - R_f(A - X))$$

6 Note: F is a function ($\because X = Y \Rightarrow R_g(B - R_f(A - X)) = R_g(B - R_f(A - Y))$).

7

8 Note: F is total ($\because \forall X \in \mathcal{P}(A) \exists R_g(B - R_f(A - X)) \in \mathcal{P}(A)$).

9 • Choose any $X_1, X_2 \in \mathcal{P}(A)$ such that $X_1 \subseteq X_2$

10

11 $\Rightarrow F(X_1) = R_g(B - R_f(A - X_1)) \subseteq R_g(B - R_f(A - X_2)) = F(X_2)$
 12 (by Corollary 1)

13

14 $\Rightarrow \exists Z \in \mathcal{P}(A) \mid F(Z) = R_g(B - R_f(A - Z)) = Z$ (by F.P.T.).

15

16 • Since f total, injective function and $A - Z \subseteq D_f$ ($\because A - Z \subseteq A \wedge f$ total)

17

18 $\Rightarrow \exists$ bijection $h_1 : A - Z \rightarrow R_f(A - Z)$ (by Lemma 4).

19

20 • Since g total, injective function and $B - R_f(A - Z) \subseteq D_g$ ($\because B - R_f(A - Z) \subseteq B \wedge g$ total)

21

22 $\Rightarrow \exists$ bijection $h_2 : B - R_f(A - Z) \rightarrow R_g(B - R_f(A - Z))$ (by Lemma 4)

23

24 $\Rightarrow \exists$ bijection $h_2 : B - R_f(A - Z) \rightarrow Z$ ($\because R_g(B - R_f(A - Z)) = Z$).

25

26 • Lastly,

27

28 Since $(A - Z, Z)$ is a partition of A

29

30 and $(B - R_f(A - Z), R_f(A - Z))$ is a partition of B

31

32 $\Rightarrow \exists h : A \rightarrow B \mid h$ is a bijection (by Lemma 1)

□