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Background
e Motivation

— How do you compare sizes of all sets (finite or infinite)?
— Well, what if it is difficult to exhibit this bijection?

— Also, is it possible to have an order relation on the cardinal numbers?

e Theorem Statement

The Schroeder-Bernstein Theorem. For any sets A, B

3f:A— B fis a total, injective function
A =3h:A—B|h
Jg: B — A, | gis a total, injective function

Note: given that the hypothesis holds, this theorem concludes that a bijec-
tion must exist, but does not produce this bijection

Alternative Theorem Statement Form (just uses defined symbols 3=, =, |-|)

The Schroeder-Bernstein Theorem. For any sets A, B
|A| = [B| A |B] = [A] = |A] = |B]

e This theorem is the ”"missing piece” (antisymmetry) in the definition of
partial order applied to the cardinality of sets (reflexivity, transitivity are
trivial)

e The value of this theorem lies in its application to infinite sets (result is
trivial for finite sets since the hypothesis forces the sets A and B to have
the same number of elements)

e In some people’s opinion ”this theorem is one of the first significant results
in set theory”

e Other names include Cantor-Bernstein, Cantor-Schroeder-Bernstein

— Name reflects authors: Georg Cantor, Felix Bernstein, Ernst Schroder
— Bernstein (incorrectly) (1898) proved this theorem

— Cantor (incorrectly) proved (1897) this theorem using the Axiom of
Choice

— Schroeder proved this theorem (1898) without relying on the Axiom
of Choice

e Multiple proof strategies and multiple proofs using each strategy exist:

— The proof in this presentation uses the Fixed Point Theorem
* non-constructive (the proof does not show you how you can ac-
tually construct a bijection h)
x reference: G. Hardegree, ”Set Theory”, Chapter 5, pages 10-11,
http://people.umass.edu/gmhwww/595/text.htm

is a bijection
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Helper Results

Fixed Point Theorem. ' For any set A, for any total function f : P(A) —
P(A)

VXY | X,Y €P(A): (X CY = f(X)C f(Y) = (3Z|ZCA: f(Z)=2)

Lemma 1. For any sets A, B, for any paritions (A1, As),(B1,B2) of A, B,
respectively

3 f1: A1 — By | f1is a bijection
A = 3h:A— B|his a bijection
3 fa: As — Ba, | f2 is a bijection

Proof. Define h : A — B as follows: if z € A} = h(z) := fi(z) and if z € Ay =
h(z) := fa(x). Clearly, h is a bijection. O

Lemma 2. For any set A, for any X, Y C A
XCY=>A-YCA-X

Proof. Let X CY. Ife e A-Y=axcAN-(ze€Y)=2c AN(v e X)(
XCY)=>z2zeA-X. O

Lemma 3. For any set A, for any X, Y C A, for any total function f: A — A
X CY = Ry(X) CRy(Y)

Proof. Let X CY. Let b € R¢y(X) = (Jala € X : f(a) =b) = (Fala € Y :
fl@)=b)(- X CY)=be R(Y). O

Corollary 1. For any sets A, B, for any total functions f: A — B,g: B — A,
forany XY C A

X CY = Ry(B—-Ry(A— X)) CRy(B—Rs(A-Y))

Proof. Assume X CY

= A-Y CA—- X (by Lemma 2)

= Ry(A-Y) CR¢(A—X) (by Lemma 3)

= B—-Rf(A—-—X)CB—-Rf(A-Y) (by Lemma 2)

= Ry(B—Ry(A—- X)) CRy(B—-Rs(A-Y)) (by Lemma 3) O

Lemma 4. For any sets A, B, for any total function f: A — B
fis injective AN X C Dy = 3h: X — Ry(X) | h is a bijection

Proof. Define h : X — Ry(X) as follows: (Vz|z € X : h(z) := f(x)). f total
AX C Dy = h total. Since f is injective function, thus h is injective function.
Lastly, let b € R¢(X) = (3ala € X : f(a) =b) = (Fala € X : h(a) =b) = h is
surjective. O

Isee reference for proof
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A Proof

The Schroeder-Bernstein Theorem. For any sets A, B

3f:A— B fisa total, injective function
A = 3h:A— B|his a bijection
Jg:B — A, | gis a total, injective function

1 Proof.

3 e Assume the hypothesis.

5 e Construct F': P(A) — P(A) where
F(X) = Ry(B — Ry(A — X))
6 Note: F'is a function (" X =Y = Ry(B—Ry(A— X)) =R,(B—Ry(A—

Y))).
s Note: F'is total (" VX € P(A) 3Ry(B —Rf(A — X))) € P(A)).

~

0 e Choose any X7, Xo € P(A) such that X; C X,

10

u = F(X1) = Ry(B—-Rf(4A — X1)) C Ry(B —Ry(4 — Xy)) = F(X2)
12 (by Corollary 1)
: =3Ze€P(A) | F(Z)=Ry(B—-Ry(A—Z))=Z (by F.P.T.).

15

16 e Since f total, injective function and A—Z C Dy (" A—Z C AN f total)
17

18 = d bijection hy : A— Z — Ry(A — Z) (by Lemma 4).

19
20 e Since g total, injective function and B —Ry(A—Z2) C Dy (. B—Ry(A—
2 Z) C B A g total)

22

3 = 3 bijection hy : B —Ry(A — Z) — Ry(B — Rs(A — Z)) (by Lemma
24 4)
25
2 = 3 bijection ho : B—Ry(A—2Z) = Z (" Ry(B—-Ry(A—-2)) =2).
27
2 e Lastly,
29 Since (A — Z,Z) is a partition of A
E and (B —Rf(A—2),Rf(A— Z)) is a partition of B
B = Jh: A — B| his a bijection (by Lemma 1)
32
(]



