

A Sound and Complete Semantic Tableau System for Propositional Logic

Valentín Cassano

Department of Computing and Software
McMaster University

November 20, 2008

Foreword on trees

Definition ((ordered) Tree)

A tree $\tau = (N, I, o, R)$ in which

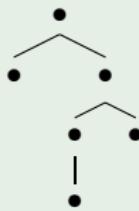
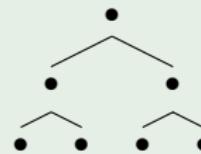
- N is a set of nodes
- $I : N \rightarrow \mathbb{N}$ assigns to each node its level in the tree
- $R \subseteq (N \times N)$ is a relation on N such that
 - there is a unique node at level 1 (the root of the tree)
 - every node other than the root has a unique parent
 - for any node if $n_p R n_c$ then $I(n_c) = I(n_p) + 1$
- $o : N \rightarrow \mathbb{N}$ assigns an order to the children of a node

Common terminology

- a *leaf* is a node that has no children
- a *simple node* is a node that has only one child (otherwise it is called a *junction point*)
- a *path* is a finite (or denumerable) sequence of nodes as usual (a branch is a path that ends in a leaf)

Foreword on trees

Example



Propositions and connectives

Definition

The language of propositional logic consists of

- proposition symbols: p_0, p_1, \dots
- connectives: $\vee, \wedge, \rightarrow, \neg, \perp$
- auxiliary symbols: $(,)$

The set of propositions $PROP$ is the smallest set X such that

- $p_i \in X$ and $\perp \in X$
- $\phi, \psi \in X$ then $(\phi \square \psi) \in X$ where $\square \in \{\vee, \wedge, \rightarrow\}$
- $\phi \in X$ then $(\neg \phi)$

Definition (Sub formulas)

The set S of sub formulas of a formula ϕ is defined by

$$\begin{aligned} sub(\phi) &= \{\phi\} \\ sub((\phi \square \psi)) &= sub(\phi) \cup sub(\psi) \cup \{(\phi \square \psi)\} \\ sub((\neg \phi)) &= sub(\phi) \cup \{(\neg \phi)\} \end{aligned}$$

Propositions and connectives

Definition (Formation tree)

Let $\phi \in PROP$, then the formation tree τ for ϕ is defined as

$$\tau(\phi) = \phi$$

$$\tau((\phi \square \psi)) = (\phi \square \psi)$$

$$\quad \quad \quad \tau(\phi) \quad \tau(\psi)$$

$$\tau((\neg\phi)) = (\neg\phi)$$

$$\quad \quad \quad \tau(\phi)$$

Example

$$(\phi \rightarrow (\neg\psi \wedge \varphi))$$

$$\quad \quad \quad \phi \quad (\neg\psi \wedge \varphi)$$

$$\quad \quad \quad \quad \quad (\neg\psi) \quad \varphi$$

$$\quad \quad \quad \quad \quad \quad \psi$$

$$((\phi \rightarrow \psi) \vee (\psi \rightarrow \phi))$$

$$\quad \quad \quad (\phi \rightarrow \psi) \quad (\psi \rightarrow \phi)$$

$$\quad \quad \quad \quad \quad \phi \quad \psi$$

$$\quad \quad \quad \quad \quad \psi \quad \phi$$

Semantics

Definition

- ϕ is a *tautology* iff $\llbracket \phi \rrbracket_v = \text{true}$ for all v
- ϕ is *satisfiable* iff $\llbracket \phi \rrbracket_v = \text{true}$ for some v

Theorem

A formula ϕ is tautology iff $(\neg\phi)$ is unsatisfiable.

Definition (Truth set)

Let $\llbracket \cdot \rrbracket_v$ be a valuation function, and let Γ be the set of formulas that are *true* under v . Then the following holds

- exactly one of ϕ or $(\neg\phi)$ belongs to Γ
- $(\phi \wedge \psi) \in \Gamma$ iff $\phi \in \Gamma$ and $\psi \in \Gamma$
- $(\phi \vee \psi) \in \Gamma$ iff $\phi \in \Gamma$ or $\psi \in \Gamma$
- $(\phi \rightarrow \psi) \in \Gamma$ iff $\phi \notin \Gamma$ or $\psi \in \Gamma$

Theorem

A formula ϕ is satisfiable iff is is the member of some truth set Γ

Analytic Tableau

Theorem

For all $\llbracket \cdot \rrbracket_v$ the following is true

- 1 if $\llbracket (\neg\phi) \rrbracket_v = \text{true}$, then $\llbracket \phi \rrbracket_v = \text{false}$
- 2 if $\llbracket \phi \rrbracket_v = \text{true}$, then $\llbracket (\neg\phi) \rrbracket_v = \text{false}$
- 3 if $\llbracket (\phi \wedge \psi) \rrbracket_v = \text{true}$, then $\llbracket \phi \rrbracket_v = \text{true}$ and $\llbracket \psi \rrbracket_v = \text{true}$
- 4 if $\llbracket (\phi \wedge \psi) \rrbracket_v = \text{false}$, then $\llbracket \phi \rrbracket_v = \text{false}$ or $\llbracket \psi \rrbracket_v = \text{false}$
- 5 if $\llbracket (\phi \vee \psi) \rrbracket_v = \text{true}$, then $\llbracket \phi \rrbracket_v = \text{true}$ or $\llbracket \psi \rrbracket_v = \text{true}$
- 6 if $\llbracket (\phi \vee \psi) \rrbracket_v = \text{false}$, then $\llbracket \phi \rrbracket_v = \text{false}$ and $\llbracket \psi \rrbracket_v = \text{false}$
- 7 if $\llbracket (\phi \rightarrow \psi) \rrbracket_v = \text{true}$, then $\llbracket \phi \rrbracket_v = \text{false}$ or $\llbracket \psi \rrbracket_v = \text{true}$
- 8 if $\llbracket (\phi \rightarrow \psi) \rrbracket_v = \text{false}$, then $\llbracket \phi \rrbracket_v = \text{true}$ and $\llbracket \psi \rrbracket_v = \text{false}$

Definition (Signed formulas)

Let us introduce two symbols T and F , then under any interpretation $T[\phi]$ iff $\llbracket \phi \rrbracket = \text{true}$, and $F[\phi]$ iff $\llbracket \phi \rrbracket = \text{false}$. By the *conjugate* of T we mean F (and vice versa).

Tableau Method

Example

$$((\psi \rightarrow \psi) \wedge (\psi \rightarrow \varphi)) \rightarrow (\phi \rightarrow \varphi)$$

$$F[((\psi \rightarrow \psi) \wedge (\psi \rightarrow \varphi)) \rightarrow (\phi \rightarrow \varphi)]$$

$$T[(\psi \rightarrow \psi) \wedge (\psi \rightarrow \varphi)]$$

$$F[(\phi \rightarrow \varphi)]$$

$$T[(\psi \rightarrow \psi)]$$

$$T[(\psi \rightarrow \varphi)]$$

$$T[\phi]$$

$$F[\varphi]$$

$$F[\phi]$$

$$T[\psi]$$

•

$$F[\psi]$$

$$T[\varphi]$$

•

•

Tableau Method

Definition (Rules for the construction of the tableau)

$$(1) \quad \frac{T[(\neg\phi)]}{F[\phi]}$$

$$(2) \quad \frac{F[(\neg\phi)]}{T[\phi]}$$

$$(3) \quad \frac{T[(\phi \wedge \psi)]}{\begin{array}{l} T[\phi] \\ T[\psi] \end{array}}$$

$$(4) \quad \frac{F[(\phi \wedge \psi)]}{F[\phi] | F[\psi]}$$

$$(5) \quad \frac{F[(\phi \vee \psi)]}{\begin{array}{l} F[\phi] \\ F[\psi] \end{array}}$$

$$(6) \quad \frac{T[(\phi \vee \psi)]}{T[\phi] | T[\psi]}$$

$$(7) \quad \frac{F[(\phi \rightarrow \psi)]}{\begin{array}{l} T[\phi] \\ F[\psi] \end{array}}$$

$$(8) \quad \frac{T[(\phi \rightarrow \psi)]}{F[\phi] | T[\psi]}$$

Tableau Method

Theorem (Truth set)

Let Γ be a set of signed formulas, then Γ is a truth set iff

- 1 Exactly one of $T[\phi]$ or $F[\phi]$ belongs to Γ
- 2 $(\alpha \in \Gamma \text{ iff } \alpha_1 \in \Gamma \text{ and } \alpha_2 \in \Gamma) \text{ and } (\beta \in \Gamma \text{ iff } \beta_1 \in \Gamma \text{ or } \beta_2 \in \Gamma)$

Definition (Analytic Tableau)

An analytic tableau τ for a formula ϕ is an ordered binary tree whose nodes $n \in sub(\phi)$, and it is constructed as follows

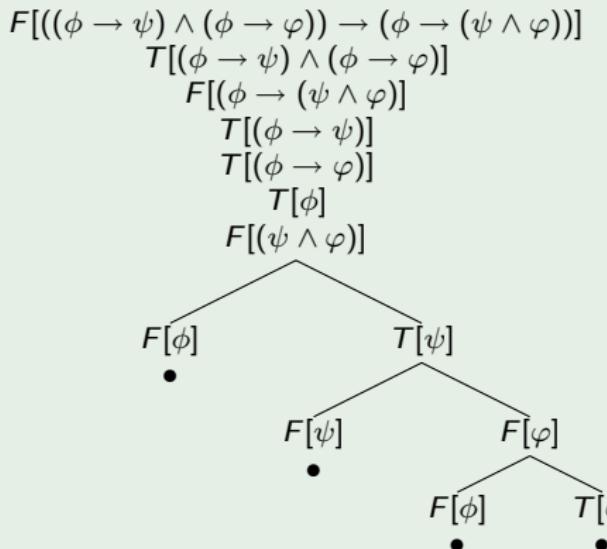
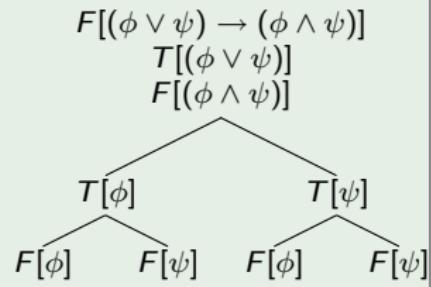
- the root of τ is $F[\phi]$
- Let τ be a tableau for $F[\phi]$ and θ a branch of τ , then we can extend τ by
 - if some α appears in θ , then we extend θ with $\frac{\alpha_1}{\alpha_2}$
 - if some β appears in θ , then we extend θ with $\beta_1|\beta_2$

Definition

- A branch θ of τ is *closed* if some signed formula and its conjugate appears in θ
- A tableau τ is *closed* if every branch of τ is closed
- By a *proof* for ϕ we mean a closed tableau with $F[\phi]$ as its root

Tableau Method

Example



Completeness

Theorem (Consistency)

Let τ be any closed tableau, then its root is unsatisfiable

Definition

A branch θ of τ is complete if for every $\alpha \in \theta$, then $\alpha_1, \alpha_2 \in \theta$, and for every $\beta \in \theta$, either $\beta_1, \beta_2 \in \theta$. A tableau τ is completed if every branch is either closed or complete.

Theorem (Completeness)

Any complete open branch of the tableau is satisfiable. The proof relies on Hintikka's lemma

Lemma (Hintikka)

Every downward saturated set Γ is satisfiable.

Conclusions

- a presentation of a(nother) sound and complete proof system for propositional logic
- useful as provide counterexamples that violates the formula checked
- the method is applied in model checking and satisfiability proofs
- widely used as a proof procedure for modal logics

Questions

Questions? > /dev/null

Bibliography

- D. van Dalen. *Logic and Structure*. Fourth edition, Springer, 2003.
- R. Smullyan. *First Order Logic*. Dover, 1995.