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Popular View of What Mathematics Is

Mathematics is a huge body of concepts and facts about
such things as time, measure, pattern, space, and logical
consequence.

New concepts and facts are discovered by the
definition-theorem-proof process.

Mathematics is infallible.

I Old concepts and facts are immutable.

Conjectures are either proved with a proof or refuted with
a counterexample.
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Mathematics-as-Process View

Mathematics is a process consisting of three intertwined
activities:

1. Model creation: Mathematical models representing
mathematical aspects of the world are created.

2. Model exploration: The models are explored by:

a. Stating and proving conjectures.
b. Performing computations.
c. Creating and studying visual representations.

3. Model connection: Models with similar structure are
connected to each other to facilitate the creation and
exploration of new models.
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Proof

Mathematical proof is an essential component of the
mathematics process which is unique to mathematics.

It is a method of discovery, communication, and
certification.

An informal proof is a convincing argument that a
statement about a model is true.

A formal proof is a logical deduction from a set of
premises to a conclusion.

I Can be mechanically checked.

A formal proof can be presented in two ways:

I As a description of the actual deduction.
I As a prescription for creating the deduction.
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Lakatosian View

Presented by Imre Lakatos in Proofs and Refutations,
Cambridge University Press, 1976.

Mathematical reasoning is dialectical.

I Dialectic between a theory and it theorems.
I Dialectic between a conjecture and its proof.

New mathematics is discovered by analyzing the proofs of
conjectures according to the method of proof and
refutations.

The definition-theorem-proof style of presentation hides
the true nature of mathematics.
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Mathematics for Software Engineering

Mathematics enters software engineering from three sources:

1. Mathematics underlying the concepts and techniques of
computer science.

I This is largely discrete mathematics.

2. Mathematics used to manage the software development
process.

I Many of the principal products of software engineering
are essentially mathematical models (e.g., requirement
specifications, design documents, software descriptions,
and software code).

I This is largely logic.

3. Mathematics needed to understand physical devices.

I This is largely continuous mathematics.
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Software Development as Mathematics

A rigorous software development process is a special case
of the mathematics process.

I Formulation of software requirements and design and
implementation of software involves the creation of
mathematical models.

I Verification and analysis of software involves the
exploration of mathematical models.

I Reuse of software involves the connection of
mathematical models.

Managing software documentation is a special case of
managing mathematical knowledge.
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The Need for Mechanization

The mathematical models produced by software
engineering are often different than traditional
mathematical models:

I They tend to be very large with many details.
I They are usually produced by teams of developers.
I Most of the content is mathematically uninteresting.
I Small mistakes can have a dire effect on such things as

mission, cost, security, and safety.

The traditional paper-based mathematical practice is
becoming increasingly untenable for software
development.

The mathematics part of the software development
process must be mechanized.
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What is Logic?

Study of the principles underlying sound reasoning.

I Central idea: logical consequence.

Branch of mathematics.

Makes explicit several fundamental distinctions:

I Syntax vs. semantics.
I Language vs. metalanguage.
I Theory vs. model.
I Truth vs. proof.

Principal tools: formal systems called logics.
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Syntax vs. Semantics

The syntax of language is concerned with how the
expressions of the language are constructed.

I For example, “the numeral 144 has three digits” is a
statement about syntax.

The semantics of a language is concerned with what the
expressions of the language mean.

I For example, “the number 144 is a perfect square” is a
statement about semantics.

This distinction is crucial in mathematics and computing.

I Confusion between syntax and semantics is the source of
many errors.

Logic carefully disentangles the roles of syntax and
semantics in reasoning.

10



Language vs. Metalanguage

A language is for talking about a certain subject.

A metalanguage for a language L is a language for talking
about L itself.

A natural language, such as English, usually serves as its
own metalanguage.

I As a result, the distinction is not explicit in English.

A formal language, such as a logical or programming
language, usually is not expressive enough to serve as its
own metalanguage.

I A metalanguage of a formal language may be a formal
language, but usually it is only informal.
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What is a Logic?

Informally, a logic is a system of reasoning.

Formally, a logic is a family of formal languages with:

1. A common syntax.
2. A common semantics.
3. A notion of logical consequence.

A logic may include a proof system for proving that a
given formula is a logical consequence of a given set of
formulas.

Examples:

I Propositional logic.
I First-order logic.
I Simple type theory (higher-order logic).
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Language Syntax

A language defines a collection of expressions formed
from:

I Variables.
I Constants (nonlogical constants).
I Constructors (logical constants).

Three kinds of expressions:

I Terms: Denote objects or values.
I Formulas: Make assertions about objects or values.
I Types: Restrict the scope of variables, control the

formation of expressions, and classify expressions by
their values.

Some languages have constructors that bind variables
(e.g., ∀, ∃, λ, I, ε, { | }).
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Language Semantics

A model M for a language L is a pair (D, V ) where:

1. D is a set of values called the domain that includes the
truth values t and f.

2. V is a function from the expressions of L to D called the
valuation function.

M satisfies a formula A of L, written M |= A, if
V (A) = t.

M satisfies a set Σ of formulas of L, written M |= Σ, if M
satisfies each A ∈ Σ.

A is a semantic consequence of Σ, written Σ |= A, if
every model for L that satisfies Σ also satisfies A.

A is valid, written |= A, if every model for L satisfies A.

Σ is satisfiable if there exists some model for L that
satisfies Σ.
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Hilbert-Style Proof Systems

A Hilbert-style proof system H for a language L consists
of:

1. A set of formulas of L called logical axioms.
2. A set of rules of inference.

A proof of A from Σ in H is a finite sequence B1, . . . , Bn

of formulas of L with Bn = A such that each Bi is either
a logical axiom, a member of Σ, or follows from earlier Bj

by one of the rules of inference.

A is syntactic consequence of Σ in H, written Σ `H A, if
there is a proof of A from Σ in H.

A is a theorem in H, written `H A, if there is a proof of
A from ∅ in H.

Σ is consistent in H if not every formula is a syntactic
consequence of Σ in H.
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Kinds of Proof Systems

Hilbert style.

Symmetric sequent (Gentzen).

Asymmetric sequent.

Natural deduction (Gentzen, Quine, Fitch, Berry).

Semantic tableaux (Beth, Hintikka).

Resolution (J. Robinson).
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Soundness and Completeness

Let P be a proof system for a language L.

P is sound if

Σ `P A implies Σ |= A.

P is complete if

Σ |= A implies Σ `P A.

Notice that, if P is sound and complete, then

Σ |= A iff Σ `P A.
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Theories

A theory is a pair T = (L, Γ) where:

1. L is a language (the language of T ).
2. Γ is a set of formulas of L (the axioms of T ).

M is a model of T , written M |= T , if M |= Γ.

A theory can be viewed as a specification of its models.

A is valid in T , written T |= A, if Γ |= A.

A is a theorem of T in P, written T `P A, if Γ `P A.

T is satisfiable if Γ is satisfiable.

T is consistent in P if Γ is consistent in P.
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Semantic vs. Syntactic Consequence

Semantics Syntax

semantic consequence syntactic consequence
A is valid A is a theorem in P
|= A `P A
A is valid in T A is a theorem of T in P
T |= A T `P A
T is satisfiable T is consistent in P

Semantic consequence and syntactic consequence are
different forms of logical consequence.

The semantic and syntactic notions are equivalent in a
logic when P is sound and complete.

Sound and complete proof systems exist for:
I Propositional logic.
I First-order logic (Gödel, 1930).
I Simple type theory (Henkin, 1950).

19



Mathematical Problems: Fundamental Form

Most mathematical problems can be expressed as
statements of the form

T |= A

where T is a theory and A is a formula.

There are three basic ways of deciding whether or not
T |= A:

1. Model checking: Show M |= A for each model M of T .
2. Proof: Show T `P A for some sound proof system P.
3. Counterexample: Show M |= ¬A for some model M of

T .
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