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What is Propositional Logic?

Propositional logic is the study of the truth or falsehood
of propositions or sentences constructed using
truth-functional connectives.

I Also called sentential logic.
I Began with the work of the Stoic philosophers,

particularly Chrysippus, in the late 3rd century BCE.

Most other logics are extensions of propositional logic.

Main applications:

I Logical arguments.
I Logical circuits (e.g., electronic circuits).
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Syntax

A language of proposition logic is a pair L = (A,B)
where:

I A is a set of constants called propositional symbols or
propositional letters.

I B is a set of 0-ary, unary, and binary constructors called
propositional connectives.

A formula of L is a string of symbols inductively defined
by the following formation rules:

1. Each p ∈ A is a formula of L.
2. If c0, c1, c2 ∈ B are 0-ary, unary, and binary, respectively,

and A1,A2 are formulas of L, then c0, (c1 A1), and
(A1 c2 A2) are formulas of L.

Common propositional connectives: T, F (0-ary);
¬ (unary); ∧, ∨, ⇒, ⇔, | (binary).
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An Example Language

Let L0 = (A,B) be the propositional language where:

A = {p0, p1, p2, . . .}.
B = {¬,⇒}.

The following abbreviations are employed:

T denotes (p0 ⇒ p0).
F denotes (¬T).
(A ∨ B) denotes ((¬A) ⇒ B).
(A ∧ B) denotes (¬((¬A) ∨ (¬B))).
(A ⇔ B) denotes ((A ⇒ B) ∧ (B ⇒ A)).
(A | B) denotes (¬(A ∧ B)).
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Meaning of Propositional Connectives

Each n-ary propositional connective denotes an assigned
n-ary truth function.

Examples:

T

t

F

f

p (¬p)

t f
f t

p q (p ∧ q)

t t t
t f f
f t f
f f f

p q (p ∨ q)

t t t
t f t
f t t
f f f

p q (p ⇒ q)

t t t
t f f
f t t
f f t

p q (p ⇔ q)

t t t
t f f
f t f
f f t

p q (p | q)

t t f
t f t
f t t
f f t
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Complete Sets of Propositional Connectives

A set C of proposition connectives is complete if every
truth function can be represented by a formula using only
members of C.

Examples of complete sets of propositional connectives:

I {¬,⇒}.
I {¬,∧}.
I {¬,∨}.
I {|}.
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Semantics

Let L = (A,B) be a language of propositional logic, and
for each c ∈ B, let fc be its assigned truth function.

A model for L is an (interpretation) function I that
assigns a truth value in {t, f} to each p ∈ A.

The valuation function for I is the function V that maps
formulas of L to {t, f} and satisfies the following
conditions:

1. If p ∈ A, then V (p) = I (p).
2. If c ∈ B is 0-ary, then V (c) = fc .
3. If c ∈ B is unary and A is a formula of L, then

V ((c A)) = fc(V (A)).
4. If c ∈ B is binary and A,B are formulas of L, then

V ((A c B)) = fc(V (A),V (B)).
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Truth Tables

Truth tables can be used to analyze the meaning of
propositional formulas.

Example (Rule of Contraposition):

p q ((p ⇒ q) ⇔ ((¬q) ⇒ (¬p)))
t t t t f t f t
t f f t t f f t
f t t t f t t t
f f t t t t t t

A propositional formula A is a tautology and is valid if all
of the final entries in the truth table for A are t.

A propositional formula A is satisfiable if some of the final
entries in the truth table for A are t.

The validity of propositional formulas can be decided with
truth tables—hence propositional logic is decidable!
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Laws of Propositional Logic

The laws of propositional logic are fundamental laws of
most other common logics.

Examples:

I Law of Double Negation.
I Law of Excluded Middle.
I Law of Contraposition.
I De Morgan’s Laws.
I Associative, commutative, and distributive laws.
I Idempotent, identity, domination, and absorption laws.

9



A Hilbert-Style Proof System

Let H be the following Hilbert-style proof system for L0:

The logical axioms of H are all formulas of L0 that are
instances of the following three schemas:

A1: (A ⇒ (B ⇒ A)).
A2: ((A ⇒ (B ⇒ C )) ⇒ ((A ⇒ B) ⇒ (A ⇒ C ))).
A3: ((¬A ⇒ ¬B) ⇒ (B ⇒ A)).

The single rule of inference of H is modus ponens:

MP: From A and (A ⇒ B), infer B.
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Metatheorems of Propositional Logic

Deduction Theorem. Σ∪{A} `H B implies Σ `H A ⇒ B .

Soundness Theorem. Σ `H A implies Σ |= A.

Completeness Theorem. Σ |= A implies Σ `H A.

Soundness and Completeness Theorem (second form).
Σ is consistent in H iff Σ is satisfiable.

Compactness Theorem. If Σ is finitely satisfiable, then
Σ is satisfiable.
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