

CAS 701 Fall 2008

02 Proposition Logic

William M. Farmer

Department of Computing and Software
McMaster University

10 September 2008

What is Propositional Logic?

- Propositional logic is the study of the truth or falsehood of propositions or sentences constructed using truth-functional connectives.
 - ▶ Also called sentential logic.
 - ▶ Began with the work of the Stoic philosophers, particularly Chrysippus, in the late 3rd century BCE.
- Most other logics are extensions of propositional logic.
- Main applications:
 - ▶ Logical arguments.
 - ▶ Logical circuits (e.g., electronic circuits).

Syntax

- A **language** of proposition logic is a pair $L = (\mathcal{A}, \mathcal{B})$ where:
 - ▶ \mathcal{A} is a set of constants called **propositional symbols** or **propositional letters**.
 - ▶ \mathcal{B} is a set of 0-ary, unary, and binary constructors called **propositional connectives**.
- A **formula** of L is a string of symbols inductively defined by the following formation rules:
 1. Each $p \in \mathcal{A}$ is a formula of L .
 2. If $c_0, c_1, c_2 \in \mathcal{B}$ are 0-ary, unary, and binary, respectively, and A_1, A_2 are formulas of L , then c_0 , $(c_1 A_1)$, and $(A_1 c_2 A_2)$ are formulas of L .
- Common propositional connectives: \top, \perp (0-ary);
 \neg (unary); $\wedge, \vee, \Rightarrow, \Leftrightarrow, \mid$ (binary).

An Example Language

- Let $L_0 = (\mathcal{A}, \mathcal{B})$ be the propositional language where:

$$\mathcal{A} = \{p_0, p_1, p_2, \dots\}.$$

$$\mathcal{B} = \{\neg, \Rightarrow\}.$$

- The following abbreviations are employed:

$$T \quad \text{denotes} \quad (p_0 \Rightarrow p_0).$$

$$F \quad \text{denotes} \quad (\neg T).$$

$$(A \vee B) \quad \text{denotes} \quad ((\neg A) \Rightarrow B).$$

$$(A \wedge B) \quad \text{denotes} \quad (\neg((\neg A) \vee (\neg B))).$$

$$(A \Leftrightarrow B) \quad \text{denotes} \quad ((A \Rightarrow B) \wedge (B \Rightarrow A)).$$

$$(A \mid B) \quad \text{denotes} \quad (\neg(A \wedge B)).$$

Meaning of Propositional Connectives

- Each n -ary propositional connective denotes an assigned n -ary truth function.
- Examples:

	T	p	$(\neg p)$		p	q	$(p \wedge q)$		p	q	$(p \vee q)$
T		T	F		T	T	T		T	T	T
F		F	T		T	F	F		T	F	T
					F	T	F		F	T	T
F					F	F	F		F	F	F

p	q	$(p \Rightarrow q)$	p	q	$(p \Leftrightarrow q)$	p	q	$(p \mid q)$
T	T	T	T	T	T	T	T	F
T	F	F	T	F	F	T	F	T
F	T	T	F	T	F	F	T	T
F	F	T	F	F	T	F	F	T

Complete Sets of Propositional Connectives

- A set \mathcal{C} of proposition connectives is **complete** if every truth function can be represented by a formula using only members of \mathcal{C} .
- Examples of complete sets of propositional connectives:
 - ▶ $\{\neg, \Rightarrow\}$.
 - ▶ $\{\neg, \wedge\}$.
 - ▶ $\{\neg, \vee\}$.
 - ▶ $\{| \}$.

Semantics

- Let $L = (\mathcal{A}, \mathcal{B})$ be a language of propositional logic, and for each $c \in \mathcal{B}$, let f_c be its assigned truth function.
- A **model** for L is an (interpretation) function I that assigns a truth value in $\{\text{T}, \text{F}\}$ to each $p \in \mathcal{A}$.
- The **valuation function** for I is the function V that maps formulas of L to $\{\text{T}, \text{F}\}$ and satisfies the following conditions:
 1. If $p \in \mathcal{A}$, then $V(p) = I(p)$.
 2. If $c \in \mathcal{B}$ is 0-ary, then $V(c) = f_c$.
 3. If $c \in \mathcal{B}$ is unary and A is a formula of L , then $V((c A)) = f_c(V(A))$.
 4. If $c \in \mathcal{B}$ is binary and A, B are formulas of L , then $V((A c B)) = f_c(V(A), V(B))$.

Truth Tables

- Truth tables can be used to analyze the meaning of propositional formulas.
- Example (Rule of Contraposition):

p	q	$((p \Rightarrow q) \Leftrightarrow ((\neg q) \Rightarrow (\neg p)))$					
T	T	T	T	F	T	F	T
T	F	F	T	T	F	F	T
F	T	T	T	F	T	T	T
F	F	T	T	T	T	T	T

- A propositional formula A is a **tautology** and is **valid** if all of the final entries in the truth table for A are T.
- A propositional formula A is **satisfiable** if some of the final entries in the truth table for A are T.
- The validity of propositional formulas can be decided with truth tables—hence **propositional logic is decidable!**

Laws of Propositional Logic

- The laws of propositional logic are fundamental laws of most other common logics.
- Examples:
 - ▶ Law of Double Negation.
 - ▶ Law of Excluded Middle.
 - ▶ Law of Contraposition.
 - ▶ De Morgan's Laws.
 - ▶ Associative, commutative, and distributive laws.
 - ▶ Idempotent, identity, domination, and absorption laws.

A Hilbert-Style Proof System

Let \mathbf{H} be the following Hilbert-style proof system for L_0 :

- The **logical axioms** of \mathbf{H} are all formulas of L_0 that are instances of the following three schemas:

$$\mathbf{A1}: (A \Rightarrow (B \Rightarrow A)).$$

$$\mathbf{A2}: ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))).$$

$$\mathbf{A3}: ((\neg A \Rightarrow \neg B) \Rightarrow (B \Rightarrow A)).$$

- The single **rule of inference** of \mathbf{H} is **modus ponens**:

MP: From A and $(A \Rightarrow B)$, infer B .

Metatheorems of Propositional Logic

- Deduction Theorem. $\Sigma \cup \{A\} \vdash_{\mathbf{H}} B$ implies $\Sigma \vdash_{\mathbf{H}} A \Rightarrow B$.
- Soundness Theorem. $\Sigma \vdash_{\mathbf{H}} A$ implies $\Sigma \models A$.
- Completeness Theorem. $\Sigma \models A$ implies $\Sigma \vdash_{\mathbf{H}} A$.
- Soundness and Completeness Theorem (second form).
 Σ is consistent in \mathbf{H} iff Σ is satisfiable.
- Compactness Theorem. If Σ is finitely satisfiable, then Σ is satisfiable.