

CAS 701 Fall 2008

03 Numbers, Sets, Functions, and Relations

William M. Farmer

Department of Computing and Software
McMaster University

23 September 2008

Number Systems

- The main number systems:
 - ▶ \mathbf{N} , the natural numbers.
 - ▶ \mathbf{Z} , the integers.
 - ▶ \mathbf{Q} , the rational numbers.
 - ▶ \mathbf{R} , the real numbers.
 - ▶ \mathbf{C} , the complex numbers.
- Other important number systems:
 - ▶ \mathbf{Z}_n , the integers modulo n .
 - ▶ \mathbf{O} , the ordinal numbers.
 - ▶ \mathbf{H} , the hyperreal numbers.
 - ▶ \mathbf{S} , the surreal numbers.

Foundational Mathematical Objects

- The three most common kinds of foundational objects:
 1. Sets.
 2. Functions.
 3. Relations.
- Each kind of object can be used to represent the other two kinds of objects.

Sets

- A **set** is a collection of objects.
- Some very large collections of objects cannot be sets.
 - ▶ For example, consider the the **Russell set**, the set of all sets that do not contain themselves.
 - ▶ A collection that is too large to be a set is called a **proper class**.
- Styles of set theories:
 - ▶ Naive set theory.
 - ▶ Having a universal set.
 - ▶ Having no universal set (e.g., **ZF set theory**).
 - ▶ Having a universal class (e.g., **NBG set theory**).

Set Concepts

- **Basic properties:** membership, subset, cardinality.
- **Basic operations:**
 - ▶ Union, intersection, complement, difference, symmetric-difference.
 - ▶ Cartesian product (product), disjoint union (sum).
 - ▶ Sum set, power set.
- **Special sets:** the emptyset, universal sets, functions, relations, ordinals, cardinals.
- Functions and relations can be represented as special kinds of sets (e.g., as sets of **tuples**).

(Unary) Functions

- **Definition 1:** A **function** is a rule $f : I \rightarrow O$ that associates members of I (inputs) with members of O (outputs).
 - ▶ Every input is associated with at most one output.
 - ▶ Some inputs may not be associated with an output.

Example: $f : \mathbf{Z} \rightarrow \mathbf{Q}$ where $x \mapsto 1/x$.
- **Definition 2:** A **function** is a set $f \subseteq I \times O$ such that if $(x, y), (x, y') \in f$, then $y = y'$.
- Each function f has a **domain** $D \subseteq I$ and a **range** $R \subseteq O$.
 - ▶ f is **total** if $D = I$ and **partial** if $D \subset I$.
- A set or relation can be represented as a special kind of function (e.g., as a **predicate**, a **characteristic function**, or an **indicator**).

Lambda Notation

- Lambda notation is a precise, convenient way to specify functions.

- If B is an expression of type β ,

$$\lambda x : \alpha . B$$

denotes a function $f : \alpha \rightarrow \beta$ such that $f(a) = B[x \mapsto a]$.

- Example: Let $f = \lambda x : \mathbf{R} . x * x$.

- ▶ $f(2) = (\lambda x : \mathbf{R} . x * x)(2) = 2 * 2$.
 - ▶ f denotes the squaring function.

- Lambda notation is used in many languages to express ideas about functions.

- Examples:

- ▶ Lambda Calculus (a model of computability).
 - ▶ Simple Type Theory (a higher-order predicate logic).
 - ▶ Lisp (a functional programming language).

n-Ary Functions

- **Definition 1:** For $n \geq 0$, an *n*-ary function is a rule $f : I_1, \dots, I_n \rightarrow O$ that associates members of I_1, \dots, I_n (inputs) with members of O (outputs).
 - ▶ Every list of inputs is associated with at most one output.
 - ▶ Some lists of inputs may not be associated with an output.
- **Definition 2:** For $n \geq 0$, an *n*-ary function is a set $f \subseteq I_1 \times \dots \times I_n \times O$ such that if $(x_1, \dots, x_n, y), (x_1, \dots, x_n, y') \in f$, then $y = y'$.
- Each function f has a **domain** $D \subseteq I_1 \times \dots \times I_n$ and a **range** $R \subseteq O$.

Representing n -Ary Functions as Unary Functions

There are two ways of representing a n -ary function as a unary function:

1. **As a function of tuples:** $f : I_1, \dots, I_n \rightarrow O$ is represented as

$$f' : I_1 \times \dots \times I_n \rightarrow O$$

where

$$f(x_1, \dots, x_n) = f'((x_1, \dots, x_n)).$$

2. **As a curried function:** $f : I_1, \dots, I_n \rightarrow O$ is represented as

$$f'' : I_1 \rightarrow (I_2 \rightarrow (\dots (I_n \rightarrow O) \dots))$$

where

$$f(x_1, \dots, x_n) = f''(x_1) \dots (x_n).$$

Example

- Let $f = \lambda x, y : \mathbf{R} . x^2 + y^2$.

- $f' = \lambda p : \mathbf{R} \times \mathbf{R} . [\text{fst}(p)]^2 + [\text{snd}(p)]^2$.

$$\begin{aligned}f'((a, b)) &= (\lambda p : \mathbf{R} \times \mathbf{R} . [\text{fst}(p)]^2 + [\text{snd}(p)]^2)((a, b)) \\&= [\text{fst}((a, b))]^2 + [\text{snd}((a, b))]^2 \\&= a^2 + b^2.\end{aligned}$$

- $f'' = \lambda x : \mathbf{R} . \lambda y : \mathbf{R} . x^2 + y^2$.

$$\begin{aligned}f''(a)(b) &= (\lambda x : \mathbf{R} . \lambda y : \mathbf{R} . x^2 + y^2)(a)(b) \\&= (\lambda y : \mathbf{R} . a^2 + y^2)(b) \\&= a^2 + b^2.\end{aligned}$$

Function Concepts

- Basic properties:
 - ▶ Arity (0-ary, unary, n -ary with $n \geq 2$, multiary).
 - ▶ Total, injective, surjective, bijective.
 - ▶ Image, inverse image.
- Basic operations: composition, restriction, inverse.
- Special functions: the empty function, identity functions, choice functions.

Cardinality

- Two sets A and B are **equipollent**, written $A \approx B$, if there is a bijection $f : A \rightarrow B$ between them.
- $A \preceq B$ means $A \approx B'$ for some $B' \subseteq B$.
- A set is **infinite** if it is equipollent with a proper subset of itself.
- The **cardinality** of a set A is the cardinal number c such that A and c are equipollent.
- Theorem.
 1. $\mathbb{N} \approx \mathbb{Q}$.
 2. (Cantor) $\mathbb{N} \not\approx \mathbb{R}$.
- Theorem (Schröder-Bernstein). If $A \preceq B$ and $B \preceq A$, then $A \approx B$.

Relations

- For $n \geq 1$, an *n*-ary relation is a set $R \subseteq A_1 \times \cdots \times A_n$ ($n \geq 1$).
 - ▶ Any set can be considered as a unary relation.
 - ▶ Any nonunary relation can be considered as a binary relation.
- Functions are considered as special relations.
 - ▶ An *n*-ary function $f : A_1, \dots, A_n \rightarrow B$ is identified with the corresponding $(n + 1)$ -ary relation $R_f \subseteq A_1 \times \cdots \times A_n \times B$ called the *graph* of the function.
- An *n*-ary relation can be represented by an *n*-ary predicate.

Relation Concepts

- Basic binary relation properties:
 - ▶ Reflexive, symmetric, transitive.
- Basic binary relation operations:
 - ▶ Domain, range.
 - ▶ Composition, inverse.
- Special relations: the empty relation, universal relations, equivalence relations.
- Ways of representing relations:
 - ▶ Using zero-one matrices.
 - ▶ Using directed graphs.

Closures of Relations

- Reflexive closure.
- Symmetric closure.
- Transitive closure.
 - ▶ Equals the connectivity relation.

Equivalence Relations

- A binary relation on a set is an **equivalence relation** if it is reflexive, symmetric, and transitive.
- Given an equivalence relation R on a set S , the **equivalence class** of $a \in S$ is the set
$$\{b \in S \mid a R b\}.$$
- **Theorem.**
 1. The equivalence classes of an equivalence relation on a set S form a partition of S .
 2. Given a partition of a set S , there is an equivalence relation on S whose equivalence classes are the members of the partition.

Algebras

- A **mathematical structure** is a structured collection of sets, functions, and relations.
- An **algebra** is a mathematical structure consisting of:
 1. A set of elements called the **domain**.
 2. A set of distinguished elements, functions, and relations called the **signature** that impose a structure on the domain of elements.
- The signature usually determines a **language** for describing and making assertions about the elements of the domain.
- Algebras are often described by tuples of the form

$$(D, e_1, \dots, e_k, f_1, \dots, f_m, r_1, \dots, r_n).$$

Examples of Algebras

- Number systems (e.g, natural, integer, rational, real, complex, ordinal, hyperreal, surreal).
- Algebraic structures (e.g, monoids, groups, rings, fields).
- Orders (e.g., pre, partial, total, well).
- Lattices and boolean algebras.
- Graphs and trees.
- Abstract data types (ADTs) used in Computer Science (e.g, ADTs for strings, lists, streams, arrays, records, stacks, queues).