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Pre-Orders

A pre-order on a set S is a binary relation ≤ on S that is:

I Reflexive: ∀ x . x ≤ x .
I Transitive: ∀ x , y , z . x ≤ y ∧ y ≤ z ⇒ x ≤ z .

Example: (F ,⇒) is a pre-order where F is a set of
formulas and ⇒ is implication.

A pre-order can have cycles.

Every binary relation R on a set S can be extended to a
pre-order on S by taking the reflexive and transitive
closure of R .
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Partial Orders

A weak partial order on a set S is a binary relation ≤ on
S that is:

I Reflexive: ∀ x . x ≤ x .
I Antisymmetric: ∀ x , y . x ≤ y ∧ y ≤ x ⇒ x = y .
I Transitive: ∀ x , y , z . x ≤ y ∧ y ≤ z ⇒ x ≤ z .

A strict partial order on a set S is a binary relation < on
S that is:

I Irreflexive: ∀ x . ¬(x < x).
I Asymmetric: ∀ x , y . x < y ⇒ ¬(y < x).
I Transitive: ∀ x , y , z . x < y ∧ y < z ⇒ x < z .

Examples: (P(S),⊆) and (P(S),⊂) are weak and strict
partial orders.

A partial order does not have cycles.

Every pre-order can be interpreted as a partial order.
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Total Orders

A weak total order on a set S is a binary relation ≤ on S
that is:

I Antisymmetric: ∀ x , y . x ≤ y ∧ y ≤ x ⇒ x = y .
I Transitive: ∀ x , y , z . x ≤ y ∧ y ≤ z ⇒ x ≤ z .
I Total: ∀ x , y . x ≤ y ∨ y ≤ x .

A strict total order on a set S is a binary relation < on S
that is:

I Irreflexive: ∀ x . ¬(x < x).
I Asymmetric: ∀ x , y . x < y ⇒ ¬(y < x).
I Transitive: ∀ x , y , z . x < y ∧ y < z ⇒ x < z .
I Trichotomous: ∀ x , y . x < y ∨ y < x ∨ x = y .

Examples: (N,≤), (Z,≤), (Q,≤), and (R,≤) are weak
total orders.
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Some Basic Order Definitions

Let (P ,≤) be a partial order and S ⊆ P .

A maximal element [minimal element] of S is a M ∈ S
[m ∈ S ] such that ¬(M < x) [¬(x < m)] for all x ∈ S .

The maximum element or greatest element [minimum
element or least element] of S , if it exists, is a M ∈ S
[m ∈ S ] such that x ≤ M [m ≤ x ] for all x ∈ S .

An upper bound [lower bound] of S is a u ∈ P [l ∈ P]
such that x ≤ u [l ≤ x ] for all x ∈ S .

The least upper bound or supremum [greatest lower
bound or infimum of S , if it exists, is a U ∈ P [L ∈ P]
such that U is an upper bound of S and, if u is an upper
bound of S , then U ≤ u [L is a lower bound of S and, if l
is a lower bound of L, then l ≤ L].

A function f : P → P is monotone with respect to ≤ if,
for all a, b ∈ P , a ≤ b implies f (a) ≤ f (b).
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Well-Orders

A well-order on a set S is a weak total order ≤ on S such
that every nonempty subset of S has a minimum element
with respect to ≤.

Examples: (N,≤) and (O,≤) are well-orders.

A well-order has no infinite strictly decreasing sequences.

The proof technique of induction and definition technique
of recursion can be applied with respect to a well-ordered
set.
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Lattices

A lattice is partial order (L,≤) such that:

1. Every pair a, b of elements of L has a least upper bound
in L called the join of a and b (joins exist).

2. Every pair a, b of elements of L has a greatest lower
bound in L called the meet of a and b (meets exist).

The minimum and maximum of a lattice, if they exist, are
called the bottom denoted by 0 or ⊥ and the top denoted
by 1 or >, respectively.

Examples:

I (P(S),⊆) is a lattice with a bottom and top.
I (N,≤) is a lattice with a bottom but no top.
I (N, |), where a | b means a divides b, is a lattice with a

bottom and top.
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Semilattices

A semilattice is partial order (S ,≤) such that either joins
exist or meets exist.

I It is a join-semilattice if joins exist.
I It is a meet-semilattice if meets exist.

Examples:

I Any lattice is a semilattice.
I Any tree can be viewed as a semilattice.
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Complete Lattices

A complete lattice is a partial order (L,≤) such that, for
each S ⊆ L, S has a least upper bound and greatest
lower bound in L.

Examples:

I (P(S),⊆) is a complete lattice.
I (R(0, 1),≤) is not a complete lattice.
I (R[0, 1],≤) is a complete lattice.
I (Q[0, 1],≤) is not a complete lattice.
I (N,≤) is not a complete lattice.
I (N, |) is a complete lattice.
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Knaster-Tarski Fixed Point Theorem

Theorem. Let (L,≤) be a complete lattice and f : L → L
be monotone with respect to ≤. Then there exists a fixed
point of f , i.e., there exists an a ∈ L such that f (a) = a.
Moreover, (F ,≤), where F is the set of fixed points of f ,
is a complete lattice.

There are several other fixed point theorems related to
the Knaster-Tarski theorem.

Fixed point theorems can be used to define objects by
recursion.
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