

CAS 701 Fall 2008

04 Orders and Lattices

William M. Farmer

Department of Computing and Software
McMaster University

26 October 2008

Pre-Orders

- A **pre-order** on a set S is a binary relation \leq on S that is:
 - ▶ **Reflexive**: $\forall x . x \leq x$.
 - ▶ **Transitive**: $\forall x, y, z . x \leq y \wedge y \leq z \Rightarrow x \leq z$.
- **Example**: (F, \Rightarrow) is a pre-order where F is a set of formulas and \Rightarrow is implication.
- A pre-order can have cycles.
- Every binary relation R on a set S can be extended to a pre-order on S by taking the reflexive and transitive closure of R .

Partial Orders

- A **weak partial order** on a set S is a binary relation \leq on S that is:
 - ▶ **Reflexive**: $\forall x . x \leq x$.
 - ▶ **Antisymmetric**: $\forall x, y . x \leq y \wedge y \leq x \Rightarrow x = y$.
 - ▶ **Transitive**: $\forall x, y, z . x \leq y \wedge y \leq z \Rightarrow x \leq z$.
- A **strict partial order** on a set S is a binary relation $<$ on S that is:
 - ▶ **Irreflexive**: $\forall x . \neg(x < x)$.
 - ▶ **Asymmetric**: $\forall x, y . x < y \Rightarrow \neg(y < x)$.
 - ▶ **Transitive**: $\forall x, y, z . x < y \wedge y < z \Rightarrow x < z$.
- **Examples**: $(\mathcal{P}(S), \subseteq)$ and $(\mathcal{P}(S), \subset)$ are weak and strict partial orders.
- A partial order does not have cycles.
- Every pre-order can be interpreted as a partial order.

Total Orders

- A **weak total order** on a set S is a binary relation \leq on S that is:
 - ▶ **Antisymmetric**: $\forall x, y . x \leq y \wedge y \leq x \Rightarrow x = y$.
 - ▶ **Transitive**: $\forall x, y, z . x \leq y \wedge y \leq z \Rightarrow x \leq z$.
 - ▶ **Total**: $\forall x, y . x \leq y \vee y \leq x$.
- A **strict total order** on a set S is a binary relation $<$ on S that is:
 - ▶ **Irreflexive**: $\forall x . \neg(x < x)$.
 - ▶ **Asymmetric**: $\forall x, y . x < y \Rightarrow \neg(y < x)$.
 - ▶ **Transitive**: $\forall x, y, z . x < y \wedge y < z \Rightarrow x < z$.
 - ▶ **Trichotomous**: $\forall x, y . x < y \vee y < x \vee x = y$.

Examples: (\mathbf{N}, \leq) , (\mathbf{Z}, \leq) , (\mathbf{Q}, \leq) , and (\mathbf{R}, \leq) are weak total orders.

Some Basic Order Definitions

- Let (P, \leq) be a partial order and $S \subseteq P$.
- A **maximal element** [**minimal element**] of S is a $M \in S$ [$m \in S$] such that $\neg(M < x)$ [$\neg(x < m)$] for all $x \in S$.
- The **maximum element** or **greatest element** [**minimum element** or **least element**] of S , if it exists, is a $M \in S$ [$m \in S$] such that $x \leq M$ [$m \leq x$] for all $x \in S$.
- An **upper bound** [**lower bound**] of S is a $u \in P$ [$l \in P$] such that $x \leq u$ [$l \leq x$] for all $x \in S$.
- The **least upper bound** or **supremum** [**greatest lower bound** or **infimum**] of S , if it exists, is a $U \in P$ [$L \in P$] such that U is an upper bound of S and, if u is an upper bound of S , then $U \leq u$ [L is a lower bound of S and, if l is a lower bound of L , then $l \leq L$].
- A function $f : P \rightarrow P$ is **monotone** with respect to \leq if, for all $a, b \in P$, $a \leq b$ implies $f(a) \leq f(b)$.

Well-Orders

- A **well-order** on a set S is a weak total order \leq on S such that every nonempty subset of S has a minimum element with respect to \leq .
- **Examples:** (\mathbb{N}, \leq) and (\mathbb{O}, \leq) are well-orders.
- A well-order has no infinite strictly decreasing sequences.
- The proof technique of **induction** and definition technique of **recursion** can be applied with respect to a well-ordered set.

Lattices

- A **lattice** is partial order (L, \leq) such that:
 1. Every pair a, b of elements of L has a least upper bound in L called the **join** of a and b (joins exist).
 2. Every pair a, b of elements of L has a greatest lower bound in L called the **meet** of a and b (meets exist).
- The minimum and maximum of a lattice, if they exist, are called the **bottom** denoted by 0 or \perp and the **top** denoted by 1 or \top , respectively.
- **Examples:**
 - ▶ $(\mathcal{P}(S), \subseteq)$ is a lattice with a bottom and top.
 - ▶ (\mathbb{N}, \leq) is a lattice with a bottom but no top.
 - ▶ $(\mathbb{N}, |)$, where $a | b$ means a divides b , is a lattice with a bottom and top.

Semilattices

- A **semilattice** is partial order (S, \leq) such that either joins exist or meets exist.
 - ▶ It is a **join-semilattice** if joins exist.
 - ▶ It is a **meet-semilattice** if meets exist.
- **Examples:**
 - ▶ Any lattice is a semilattice.
 - ▶ Any tree can be viewed as a semilattice.

Complete Lattices

- A **complete lattice** is a partial order (L, \leq) such that, for each $S \subseteq L$, S has a least upper bound and greatest lower bound in L .
- **Examples:**
 - ▶ $(\mathcal{P}(S), \subseteq)$ is a complete lattice.
 - ▶ $(\mathbf{R}(0, 1), \leq)$ is not a complete lattice.
 - ▶ $(\mathbf{R}[0, 1], \leq)$ is a complete lattice.
 - ▶ $(\mathbf{Q}[0, 1], \leq)$ is not a complete lattice.
 - ▶ (\mathbf{N}, \leq) is not a complete lattice.
 - ▶ $(\mathbf{N}, |)$ is a complete lattice.

Knaster-Tarski Fixed Point Theorem

- **Theorem.** Let (L, \leq) be a complete lattice and $f : L \rightarrow L$ be monotone with respect to \leq . Then there exists a fixed point of f , i.e., there exists an $a \in L$ such that $f(a) = a$. Moreover, (F, \leq) , where F is the set of fixed points of f , is a complete lattice.
- There are several other fixed point theorems related to the Knaster-Tarski theorem.
- Fixed point theorems can be used to define objects by recursion.