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What is First-Order Logic?

First-order logic is the study of statements about
individuals using functions, predicates, and quantification.

I First-order logic is also called first-order predicate logic
and first-order quantificational logic.

First-order logic is propositional logic plus:

I Terms that denote individuals.
I Predicates that are applied to terms.
I Quantifiers applied to individual variables.

First-order logic is “first-order” because quantification is
over individuals but not over higher-order objects such as
functions and predicates.

There are many versions of first-order logic.

We will define and employ a version of first-order logic
named FOL.
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Syntax of FOL: Languages

Let V be a fixed infinite set of symbols called variables.

A language of FOL is a triple L = (C,F ,P) where:

I C is a set of symbols called individual constants.
I F is a set of symbols called function symbols, each with

an assigned arity ≥ 1.
I P is a set of symbols called predicate symbols, each with

an assigned arity ≥ 1. P contains the binary predicate
symbol =.

I V, C, F , and P are pairwise disjoint.
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Syntax of FOL: Terms and Formulas

Let L = (C,F ,P) be a language of FOL.

A term of L is a string of symbols inductively defined by
the following formation rules:

I Each x ∈ V and a ∈ C is a term of L.
I If f ∈ F is n-ary and t1, . . . , tn are terms of L, then

f (t1, . . . , tn) is a term of L.

A formula of L is a string of symbols inductively defined
by the following formation rules:

I If p ∈ P is n-ary and t1, . . . , tn are terms of L, then
p(t1, . . . , tn) is a formula of L.

I If A and B are formulas of L and x ∈ V, then (¬A) and
(A ⇒ B), and (∀ x . A) are formulas of L.

=, ¬, ⇒, and ∀ are the logical constants of FOL.
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Syntax of FOL: Abbreviations

(s = t) denotes = (s, t).
(s 6= t) denotes (¬(s = t)).
T denotes (∀ x . (x = x)).
F denotes (¬(T)).
(A ∨ B) denotes ((¬A) ⇒ B).
(A ∧ B) denotes (¬((¬A) ∨ (¬B))).
(A ⇔ B) denotes ((A ⇒ B) ∧ (B ⇒ A)).
(∃ x . A) denotes (¬(∀ x . (¬A)).
(� x1, . . . , xn . A) denotes (� x1 . (� x2, . . . , xn . A))

where n ≥ 2 and � ∈ {∀,∃}.
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Free and Bound Variables

The scope of a quantifier ∀ x or ∃ x in a formula ∀ x . B
or ∃ x . B , respectively, is the part of B that is not in a
subformula of B of the form ∀ x . C or ∃ x . C .

An occurrence of a variable x in a formula A is free if it is
not in the scope of a quantifier ∀ x or ∃ x ; otherwise the
occurrence of x in A is bound.

I An occurrence of a variable in a formula is either free or
bound but never both.

I A variable can be both bound and free in a formula.

A formula is closed if it contains no free variables.

A sentence is a closed formula.
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Substitution

Let x be a variable, t a term, and A a formula.

The substitution of t for x in A, written

A[x 7→ t] or A[t/x ],

is the result of replacing each free occurrence of x in A
with t.

Suppose A is ∀ y . x = y and t is f (y). Then the
substitution A[x 7→ t] is said to capture y .

I Variable captures often produce unsound results.

t is free for x in A if no free occurrence of x in A is in the
scope of ∀ y or ∃ y for any variable y occurring t.

I Hence, t is free for x in A if the substitution A[x 7→ t]
does not result in any variable captures.
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Semantics of FOL: Models

A model for a language L = (C,F ,P) of FOL is a pair
M = (D, I ) where D is a nonempty domain (set) and I is
a total function on C ∪ F ∪ P such that:

I If a ∈ C, I (a) ∈ D.
I If f ∈ F is n-ary, I (f ) : Dn → D and I (f ) is total.
I If p ∈ P is n-ary, I (p) : Dn → {t, f} and I (p) is total.
I I (=) is idD , the identity predicate on D.

A variable assignment into M is a function that maps
each x ∈ V to an element of D.

Given a variable assignment ϕ into M , x ∈ V , and d ∈ D,
let ϕ[x 7→ d ] be the variable assignment ϕ′ into M such
ϕ′(x) = d and ϕ′(y) = ϕ(y) for all y 6= x .
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Semantics of FOL: Valuation Function

The valuation function for a model M for a language
L = (C,F ,P) of FOL is the binary function V M that satisfies
the following conditions for all variable assignments ϕ into M
and all terms t and formulas A of L:

1. Let t ∈ V . Then V M
ϕ (t) = ϕ(t).

2. Let t ∈ C. Then V M
ϕ (t) = I (t).

3. Let t = f (t1, . . . , tn). Then
V M

ϕ (t) = I (f )(V M
ϕ (t1), . . . , V

M
ϕ (tn)).

4. Let A = p(t1, . . . , tn). Then
V M

ϕ (A) = I (p)(V M
ϕ (t1), . . . , V

M
ϕ (tn)).

5. Let A = (¬A′). If V M
ϕ (A′) = f, then V M

ϕ (A) = t;
otherwise V M

ϕ (A) = f.
6. Let A = (A1 ⇒ A2). If V M

ϕ (A1) = t and V M
ϕ (A2) = f,

then V M
ϕ (A) = f; otherwise V M

ϕ (A) = t.
7. Let A = (∀ x . A′). If V M

ϕ[x 7→d ](A
′) = t for all d ∈ D, then

V M
ϕ (A) = t; otherwise V M

ϕ (A) = f.
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Notes on Quantifiers

The universal and existential quantifiers are duals of each
other:

¬(∀ x . A) ⇔ ∃ x . ¬A, ¬(∃ x . A) ⇔ ∀ x . ¬A.

Changing the order of quantifiers in a formula usually
changes the meaning of the formula.

I As a rule, ∀ x . ∃ y . A 6⇔ ∃ y . ∀ x . A.

In a formula of the form ∀ x . ∃ y . A, the value of the
existentially quantified variable y depends on the value of
the universally quantified variable x .

A universal statement like “All rodents are mammals” is
formalized as ∀ x . rodent(x) ⇒ mammal(x).

An existential statement like “Some mammals are
rodents” is formalized as ∃ x . mammal(x) ∧ rodent(x).
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Algebras as Models

If L = (C,F ,P) is a finite language of FOL, we may
present the language as

L = (c1, . . . , ck , f1, . . . , fm, p1, . . . , pn)

where C = {c1, . . . , ck}, F = {f1, . . . , fm}, and
P = {p1, . . . , pn}.
An algebra

(D, d1, . . . , dk , g1, . . . , gm, q1, . . . .qn)

can then be considered a model for L if M = (D, I ) is a
model for L where:

1. I (ci ) = di for 1 ≤ i ≤ k.
2. I (fi ) = gi for 1 ≤ i ≤ m.
3. I (pi ) = qi for 1 ≤ i ≤ n.
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Metatheorems of FOL

Completeness Theorem (Gödel 1930). There is a sound
and complete proof system for FOL.

Compactness Theorem. Let Σ be a set of formulas of a
language of FOL. If Σ is finitely satisfiable, then Σ is
satisfiable.

Undecidability Theorem (Church 1936). First-order logic
is undecidable. That is, for some language L of FOL, the
problem of whether or not a given formula of L is valid is
undecidable.
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A Hilbert-Style Proof System (1/2)

Let H be the following Hilbert-style proof system for a
language L of FOL:

The logical axioms of H are all formulas of L that are
instances of the following schemas:

I For propositional logic:
A1: A ⇒ (B ⇒ A).
A2: (A ⇒ (B ⇒ C )) ⇒ ((A ⇒ B) ⇒ (A ⇒ C )).
A3: (¬A ⇒ ¬B) ⇒ (B ⇒ A).

I For quantification:
A4: (∀ x . (A ⇒ B)) ⇒ (A ⇒ (∀ x . B))

provided x is not free in A.
A5: (∀ x . A) ⇒ A[x 7→ t]

provided t is free for x in A.
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A Hilbert-Style Proof System (2/2)

I For equality:
A6: ∀ x . x = x .
A7: ∀ x , y . x = y ⇒ y = x .
A8: ∀ x , y , z . (x = y ∧ y = z) ⇒ x = z .
A9: ∀ x1, . . . , xn, y1, . . . , yn .

(x1 = y1 ∧ · · · ∧ xn = yn) ⇒
f (x1, . . . , xn) = f (y1, . . . , yn)

where f ∈ F is n-ary.
A10: ∀ x1, . . . , xn, y1, . . . , yn .

(x1 = y1 ∧ · · · ∧ xn = yn) ⇒
(p(x1, . . . , xn) ⇔ p(y1, . . . , yn))

where p ∈ P is n-ary.

The rules of inference of H are:

MP: From A and (A ⇒ B), infer B.
GEN: From A, infer (∀ x . A), for any x ∈ V.
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More Metatheorems of FOL

Deduction Theorem. Σ∪{A} `H B implies Σ `H A ⇒ B .

Soundness Theorem. Σ `H A implies Σ |= A.

Completeness Theorem. Σ |= A implies Σ `H A.

Soundness and Completeness Theorem (second form).
Σ is consistent in H iff Σ is satisfiable.
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Theories

A theory in FOL is a pair T = (L, Γ) where:

1. L is a language of FOL.
2. Γ is a set of sentences of L.

Examples:

I Theories of orders, lattices, and boolean algebras.
I Theories of monoids and groups.
I Presburger arithmetic.
I First-order Peano arithmetic.
I Theory of real closed fields.
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The Theory of Boolean Algebras

Let BA = (L, Γ) be the theory of FOL where L is defined
below and Γ is the set of sentences of L on the next page.

L = (+, ∗, , 0, 1, =) is a language of FOL such that +
and ∗ are binary function symbols, is a unary function
symbol, and 0 and 1 are individual constants.

A boolean algebra is a model of BA.

I Named after the logician George Boole (1815-1864).
I There are infinitely many nonisomorphic models of BA.
I If (B,+, ∗, , 0, 1) is a boolean algebra, then (B,≤) is a

complemented distributive lattice with a top and bottom
where a ≤ b means a = a ∗ b ∧ a + b = b.

Examples:

I M1 = ({T,F},∨,∧,¬,F,T,⇔).
I M2 = ({S | S ⊆ U},∪,∩, , ∅,U,=) where U is any set.

BA is used to model electronic circuits.
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The Axioms of BA

Associativity Laws
∀ x , y , z . (x + y) + z = x + (y + z)
∀ x , y , z . (x ∗ y) ∗ z = x ∗ (y ∗ z)

Commutativity Laws
∀ x , y . x + y = y + x ∀ x , y . x ∗ y = y ∗ x

Distributive Laws
∀ x , y , z . x + (y ∗ z) = (x + y) ∗ (x + z)
∀ x , y , z . x ∗ (y + z) = (x ∗ y) + (x ∗ z)

Identity Laws
∀ x . x + 0 = x ∀ x . x ∗ 1 = x

Complement Laws
∀ x . x + x = 1 ∀ x . x ∗ x = 0
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Theorems of BA

Idempotent Laws
∀ x . x + x = x ∀ x . x ∗ x = x

Absorption Laws
∀ x , y . x + (x ∗ y) = x ∀ x , y . x ∗ (x + y) = x

De Morgan Laws
∀ x , y . x + y = x ∗ y
∀ x , y . x ∗ y = x + y

Laws of Zero and One
∀ x . x + 1 = 1 ∀ x , y . x ∗ 0 = 0
0 = 1 1 = 0

Law of Double Complement
∀ x . x = x
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Peano Arithmetic

PA = (L, Γ) is (second-order) Peano arithmetic (devised
by G. Peano, 1889).

L is a language of second-order logic with an individual
constant symbol 0 and a unary function symbol S .

I 0 is intended to represent the number zero.
I S is intended to represent the successor function, i.e.,

S(a) means a + 1.

Γ is the following set of axioms:

I 0 has no predecessor. ∀ x . ¬(0 = S(x)).
I S is injective. ∀ x , y . S(x) = S(y) ⇒ x = y .
I Induction principle.
∀P . (P(0) ∧ ∀ x . P(x) ⇒ P(S(x))) ⇒ ∀ x . P(x).

+ and ∗ can be defined in PA.

PA is categorical, i.e, it has exactly one model up to
isomorphism (Dedekind, 1888).
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First-Order Peano Arithmetic

PA′ = (L′, Γ′) is first-order Peano arithmetic.

L′ is a language of FOL with an individual constant
symbol 0, a unary function symbol S , and binary function
symbols + and ∗.
Γ′ is the following set of axioms:

I ∀ x . ¬(S(x) = 0).
I ∀ x , y . S(x) = S(y) ⇒ x = y .
I ∀ x . x + 0 = x .
I ∀ x , y . x + S(y) = S(x + y).
I ∀ x . x ∗ 0 = 0.
I ∀ x , y . x ∗ S(y) = (x ∗ y) + x .
I Each universal closure A of a formula of the form

(B[0] ∧ (∀ x . B[x ] ⇒ B[S(x)])) ⇒ ∀ x . B[x ]

where B[x ] is a formula of L′.

PA′ is a noncategorical approximation of Peano
arithmetic with infinitely many “nonstandard” models.
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Language and Theory Extensions

Let Li = (C i ,F i ,P i) be a language of FOL and let
Ti = (Li , Γi) be a theory of FOL for i = 1, 2.

L1 is a sublanguage of L2, and L2 is a super language or
an extension of L1, written L1 ≤ L2, if C1 ⊆ C2,
F1 ⊆ F2, and P1 ⊆ P2.

T1 is a subtheory of T2, and T2 is a super theory or an
extension of T1, written T1 ≤ T2, if L1 ≤ L2 and Γ1 ⊆ Γ2.
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Conservative Theory Extension

Let T = (L, Γ) and T ′ = (L′, Γ′) be theories of FOL.

T ′ is a conservative extension of T if T ≤ T ′ and, for
every formula A of L, T ′ |= A implies T |= A.

I A conservative extension of a theory adds new
machinery to the theory without compromising the
theory’s original machinery.

The obligation of a purported conservative extension is a
formula that implies that the extension is conservative.

There are two important kinds of conservative extensions
that add new vocabulary to a theory:

1. Definitions.
2. Profiles.
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Definitions

A definition is a conservative extension that adds a new
symbol s and a defining axiom A(s) to a theory T .

I In some logics, the defining axiom can have the form
s = D (where s does not occur in D).

The obligation of the definition is

∃ ! x . A(x).

The symbol s can usually be eliminated from any new
expression of involving s.
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Profiles

A profile is a conservative extension that adds a set
{s1, . . . , sn} of symbols and a profiling axiom
A(s1, . . . , sn) to a theory T .

The obligation of the profile is

∃ x1, . . . , xn . A(x1, . . . , xn).

The symbols s1, . . . , sn cannot usually be eliminated from
expressions involving s1, . . . , sn.

Profiles can be used for introducing:

I Underspecified objects.
I Recursively defined functions.
I Algebras.
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