

CAS 701 Fall 2008

07 Recursion and Induction

William M. Farmer

Department of Computing and Software
McMaster University

26 November 2008

What are Recursion and Induction?

- **Recursion** is a method of defining a structure or operation in terms of itself.
 - ▶ One of the most fundamental ideas of computing.
 - ▶ Can make some specifications, descriptions, and programs easier to express and prove correct.
- **Induction** is a method of proof based on a recursively defined structure.
 - ▶ The recursively defined structure and the proof method are specified by an **induction principle**.
 - ▶ Induction is especially useful for proving properties about recursively defined operations.
- The terms “recursion” and “induction” are often used interchangeably.

Example: Natural Numbers

- Recursive definition of \mathbf{N} :
 1. $0 \in \mathbf{N}$.
 2. If $n \in \mathbf{N}$, then $S(n) \in \mathbf{N}$.
 3. The members of \mathbf{N} are distinct (no confusion).
 4. \mathbf{N} is the smallest such set (no junk).
- Induction principle for \mathbf{N} :

$$\begin{aligned} \forall P : \mathbf{N} \rightarrow * . \\ [P(0) \wedge (\forall x : \mathbf{N} . P(x) \Rightarrow P(S(x)))] \\ \qquad \Rightarrow \\ \forall x : \mathbf{N} . P(x) \end{aligned}$$

- This induction principle is also called **mathematical induction**.

Example: Stacks of Natural Numbers

- Recursive definition of Stack:
 1. $\text{Bottom} \in \text{Stack}$.
 2. If $n \in \mathbf{N}$ and $s \in \text{Stack}$, then $\text{Push}(n, s) \in \text{Stack}$.
 3. The members of Stack are distinct (no confusion).
 4. Stack is the smallest such set (no junk).
- Induction principle for Stack:

$$\forall P : \text{Stack} \rightarrow * .$$

$$\begin{aligned} & [P(\text{Bottom}) \wedge \\ & (\forall s : \text{Stack} . P(s) \Rightarrow (\forall n : \mathbf{N} . P(\text{Push}(n, s))))] \\ & \qquad \Rightarrow \\ & \forall s : \text{Stack} . P(s) \end{aligned}$$

Recursive Function Definitions

- Recursion is extremely useful for defining functions.
 - ▶ Can facilitate both reasoning and computation.
- A faulty recursive definition may lead to inconsistencies.
 - ▶ Example: $\forall n : \mathbb{N} . f(n) = f(n) + 1$.
- There are several schemes for defining functions by recursion.

Recursive Definition Schemes

- Each scheme has a set of **instance requirements**.
- A scheme is **proper** if every instance of the scheme actually defines a function.
- The **domain** of a scheme is the set of functions f such that f is definable by some instance of the scheme.
- Designers of **mechanized mathematics systems** prefer schemes which:
 - ▶ Are proper.
 - ▶ Have easily checked instance requirements.
 - ▶ Have a large domain of useful functions.

The Primitive Recursive Functions (1/2)

- The class \mathcal{P} of primitive recursive functions is the smallest set of $f : \mathbf{N} \times \cdots \times \mathbf{N} \rightarrow \mathbf{N}$ closed under the following rules:
 1. Successor Function $(\lambda x : \mathbf{N} . x + 1) \in \mathcal{P}$.
 2. Constant Functions Each $(\lambda x_1, \dots, x_n : \mathbf{N} . m) \in \mathcal{P}$ where $0 \leq m, n$.
 3. Projection Functions Each $(\lambda x_1, \dots, x_n : \mathbf{N} . x_i) \in \mathcal{P}$ where $1 \leq n$ and $1 \leq i \leq n$.
 4. Composition If $g_1, \dots, g_m, h \in \mathcal{P}$, then $f \in \mathcal{P}$ where:

$$\forall x_1, \dots, x_n : \mathbf{N} .$$

$$f(x_1, \dots, x_n) = h(g_1(x_1, \dots, x_n), \dots, g_m(x_1, \dots, x_n)).$$

- 5. Primitive Recursion If $g, h \in \mathcal{P}$, then $f \in \mathcal{P}$ where:

$$\forall x_2, \dots, x_n : \mathbf{N} . f(0, x_2, \dots, x_n) = g(x_2, \dots, x_n).$$

$$\forall x_1, \dots, x_n : \mathbf{N} .$$

$$f(x_1 + 1, x_2, \dots, x_n) =$$

$$h(x_1, f(x_1, x_2, \dots, x_n), x_2, \dots, x_n).$$

The Primitive Recursive Functions (2/2)

- **Example.** The factorial function $f : \mathbf{N} \rightarrow \mathbf{N}$ is defined by:
 1. $f(0) = g() = 1$.
 2. $f(n + 1) = h(n, f(n))$ where $h(x, y) = y * (x + 1)$.
- The primitive recursion scheme is proper.
- \mathcal{P} is a very large, but proper, subset of the computable total functions on \mathbf{N} .
 - ▶ \mathcal{P} contains almost all functions on \mathbf{N} commonly found in mathematics.
- **Theorem.** There exists a computable total function $f : \mathbf{N} \rightarrow \mathbf{N}$ such that $f \notin \mathcal{P}$.

Proof: Construct f by diagonalization.

Well-Founded Relations

- A relation $R \subseteq A \times A$ is **well-founded**, if for all nonempty $B \subseteq A$, there is some $a \in B$ such that, for all $b \in B$, $\neg(b R a)$.
 - ▶ a is called an **R -least element** of B .
- **Proposition.** If R is a strict total order, then R is well-founded iff R is a well-order.

Well-Founded Recursion

- A **definition via well-founded recursion** is a tuple $W = (T, f, D, R)$ where
 - ▶ $T = (L, \Gamma)$ is a theory.
 - ▶ f is a constant of type $\alpha \rightarrow \alpha$ not in L .
 - ▶ D is a sentence of the form
$$\forall x . f(x) = E(f(a_1(x)), \dots, f(a_k(x))).$$
 - ▶ R is a well-founded relation on α .
- W defines f to be a total function in T by **well-founded recursion** if:
 1. $T \models \forall x . R\text{-least}(x) \Rightarrow E(f(a_1(x)), \dots, f(a_k(x))) = t$ for some term t of L .
 2. $T \models \forall x . \neg R\text{-least}(x) \Rightarrow a_1(x) R x \wedge \dots \wedge a_k(x) R x$.
- The **definitional extension** resulting from W is the theory $(L \cup \{f\}, \Gamma \cup \{D\})$.

Example

- Let $W = (P, f, D, <)$ where
 - ▶ P is first-order Peano arithmetic.
 - ▶ $f : \mathbf{N} \rightarrow \mathbf{N}$.
 - ▶ D is
$$\forall n . f(n) = \text{if}(n = 0, 1, f(n - 1) * n).$$
 - ▶ $<$ is the usual order on \mathbf{N} .
- The W defines the factorial function in P .

Structural Recursion and Induction

- Structural recursion is a disguised form of well-founded recursion in which the well-founded relation is a less-structure to more-structure relationship.
- Examples of sets defined by structural recursion:
 - ▶ Inductive data types such as lists, trees, and stacks.
 - ▶ Formal languages such as programming languages, the terms of FOL, and the formulas of FOL.
- Structural induction is induction over a set defined by structural recursion.
- Structural induction principle: A property P holds for all members of a set S defined by structural recursion if:
 1. P holds for all members of S having minimal structure.
 2. P holds for a structural combination of members of S whenever it holds for the members themselves.

Monotone Functionals

- A **functional** is an expression of type $\alpha \rightarrow \alpha$ where $\alpha = \alpha_1 \times \cdots \times \alpha_n \rightarrow \alpha_{n+1}$.

- **Subfunction:**

$$\begin{aligned} \forall g, h : \alpha . \ g \sqsubseteq_{\alpha} h \Leftrightarrow \\ \forall x_1 : \alpha_1, \dots, x_n : \alpha_n . \ g(x_1, \dots, x_n) \downarrow \Rightarrow \\ g(x_1, \dots, x_n) = h(x_1, \dots, x_n). \end{aligned}$$

- **Monotone:**

$$\begin{aligned} \forall F : \alpha \rightarrow \alpha . \ \text{monotone}_{\alpha}(F) \Leftrightarrow \\ \forall g, h : \alpha . \ g \sqsubseteq_{\alpha} h \Rightarrow F(g) \sqsubseteq_{\alpha} F(h). \end{aligned}$$

- **Fixed Point Theorem.** Every monotone functional has a least fixed point.

Proof: $F^{\gamma}(\Delta_{\alpha})$ must be a fixed point for some ordinal γ , where Δ_{α} is the empty function of type α .

Monotone Functional Recursion

- A **recursive definition via a monotone functional** is a triple $M = (T, f, F)$ where:
 - ▶ $T = (L, \Gamma)$ is a theory (in a higher-order logic that admits partial functions).
 - ▶ f is a constant of type α not in L .
 - ▶ F is a functional of type $\alpha \rightarrow \alpha$ which is monotone in T .
- The **defining axiom** of M is D which says “ f is a least fixed point of F ”.
- The **definitional extension** resulting from M is the theory $(L \cup \{f\}, \Gamma \cup \{D\})$.

Examples

- Empty function:

$$\lambda f : \mathbf{Z} \rightharpoonup \mathbf{Z} . \lambda n : \mathbf{Z} . f(n).$$

- Empty function:

$$\lambda f : \mathbf{Z} \rightharpoonup \mathbf{Z} . \lambda n : \mathbf{Z} . f(n) + 1.$$

- Factorial:

$$\lambda f : \mathbf{N} \rightharpoonup \mathbf{N} . \lambda n : \mathbf{N} . \text{if}(n = 0, 1, f(n - 1) * n).$$

- Sum:

$$\lambda \sigma : \mathbf{Z} \times \mathbf{Z} \times (\mathbf{Z} \rightharpoonup \mathbf{R}) \rightharpoonup \mathbf{R} .$$

$$\lambda m, n : \mathbf{Z}, f : \mathbf{Z} \rightharpoonup \mathbf{R} .$$

$$\text{if}(m \leq n, \sigma(m, n - 1, f) + f(n), 0).$$