CAS 701 Fall 2008
07 Recursion and Induction

William M. Farmer

Department of Computing and Software
McMaster University

26 November 2008

S

What are Recursion and Induction?

@ Recursion is a method of defining a structure or operation
in terms of itself.

» One of the most fundamental ideas of computing.
» Can make some specifications, descriptions, and
programs easier to express and prove correct.

@ Induction is a method of proof based on a recursively
defined structure.

» The recursively defined structure and the proof method
are specified by an induction principle.

» Induction is especially useful for proving properties about
recursively defined operations.

@ [he terms “recursion” and “induction” are often used
interchangeably.

Example: Natural Numbers

@ Recursive definition of N:

1. 0 e N.

2. If n€ N, then 5(n) € N.

3. The members of N are distinct (no confusion).
4. N is the smallest such set (no junk).

@ Induction principle for N:

VP:N — x.
[P(O) A (Vx:N.P(x)= P(5(x)))]
=
Vx:N.P(x)

@ This induction principle is also called mathematical
induction.

Example: Stacks of Natural Numbers

@ Recursive definition of Stack:

1. Bottom & Stack.

2. If n€ N and s € Stack, then Push(n,s) € Stack.
3. The members of Stack are distinct (no confusion).
4. Stack is the smallest such set (no junk).

@ Induction principle for Stack:

V P : Stack — x .
[P(Bottom) A
(Vs :Stack . P(s) = (Vn: N . P(Push(n,s)))]
=
Vs : Stack . P(s)

Recursive Function Definitions

@ Recursion is extremely useful for defining functions.
» Can facilitate both reasoning and computation.

@ A faulty recursive definition may lead to inconsistencies.
» Example: Vn:N . f(n)=f(n)+ 1.

@ There are several schemes for defining functions by
recursion.

Recursive Definition Schemes

@ Each scheme has a set of instance requirements.

@ A scheme is proper if every instance of the scheme
actually defines a function.

@ The domain of a scheme is the set of functions f such
that f is definable by some instance of the scheme.

@ Designers of mechanized mathematics systems prefer
schemes which:
» Are proper.

» Have easily checked instance requirements.
» Have a large domain of useful functions.

The Primitive Recursive Functions (1/2)

@ The class P of primitive recursive functions is the
smallest set of f : N X --- Xx N — N closed under the
following rules:

1.
2.

Successor Function (Ax:N.x+1)eP.
Constant Functions Each (Ax1,...,x,: N.m) e P
where 0 < m, n.
Projection Functions Each (Axq,....x, : N.x;) € P
wherel < nand 1</ <n.
Composition If g1,...,gm,h € P, then f € P where:
Vxi,...,x, - N .
F(x1y-.-y%n) = h(g1(X1, -3 %Xn), - ooy 8m(X1, - - -5 Xn)).

. Primitive Recursion If g, h € P, then f € P where:

Vxo,...oXnp i N F(O, %0, ..., xn) = g(X2, - .+, Xn)-
Vxi,...,xp: N.
f(x1 +1,x0,...,%,) =
h(xy, (X1, X0,y Xn)ys X2,y « ooy Xn).

The Primitive Recursive Functions (2/2)

) . The factorial function f : N — N is defined by:

1. f(0)=g()=1.
2. f(n+1) = h(n,f(n)) where h(x,y)=yx*(x+1).

@ The primitive recursion scheme is proper.

@ P is a very large, but proper, subset of the computable
total functions on N.

» P contains almost all functions on N commonly found in
mathematics.

@ Theorem. There exists a computable total function
f:N — N such that f € P.

. Construct f by diagonalization.

Well-Founded Relations

@ A relation R C A x A is well-founded, if for all nonempty
B C A, there is some a € B such that, for all b € B,
—(b R a).

» ais called an R-least element of B.

@ Proposition. If R is a strict total order, then R is
well-founded iff R is a well-order.

Well-Founded Recursion

@ A definition via well-founded recursion is a tuple
W = (T,f,D,R) where
» T =(L,I') is a theory.
» f is a constant of type &« — «a not in L.
» D is a sentence of the form

Vx . F(x) = E(F(a1(x)), . F(a(x))
» R is a well-founded relation on «.

@ W defines f to be a total function in T by well-founded
recursion if:

1. T =EVx.R-least(x) = E(f(a1(x)),...,f(ak(x)) =t
for some term t of L.
2. T =Vx.-R-least(x) = a1(x) R x A\ --- Nak(x) R x.

@ The definitional extension resulting from W is the theory
(Lu{f},TU{D}).

10

Example
o Let W= (P,f,D, <) where

» P is first-order Peano arithmetic.
» f:N— N..
» D is
Vn.f(n)=if(n=20,1,f(n—1) % n).
» < Is the usual order on N.

@ The W defines the factorial function in P.

11

Structural Recursion and Induction

@ Structural recursion is a disguised form of well-founded
recursion in which the well-founded relation is a
less-structure to more-structure relationship.

» Inductive data types such as lists, trees, and stacks.

» Formal languages such as programming languages, the
terms of FOL, and the formulas of FOL.

@ Structural induction is induction over a set defined by
structural recursion.

@ Structural induction principle: A property P holds for all
members of a set S defined by structural recursion if:

1. P holds for all members of S having minimal structure.
2. P holds for a structural combination of members of S
whenever it holds for the members themselves.

12

Monotone Functionals

@ A functional is an expression of type o — o« where
=01 X+ X Qp — Qppq.
@ Subfunction:
Vg.h:a.gC, hs
VXi:iaq, ooy Xp i Q- (X1, .00, Xn) | =
g(x1,...,Xp) = h(x1,...,Xn).
@ Monotone:
VF :a — «a . monotone,(F) <
Vg, h:a.g Ty h= F(g) T, F(h).

@ Fixed Point Theorem. Every monotone functional has a
least fixed point.

FY(A,) must be a fixed point for some ordinal ~,
where A\, is the empty function of type «.

13

Monotone Functional Recursion

@ A recursive definition via a monotone functional is a triple
M= (T,f,F) where:

» T =(L,I') is a theory (in a higher-order logic that
admits partial functions).

» f is a constant of type o not in L.

» F is a functional of type o — « which is monotone in T.

@ The defining axiom of M is D which says
“f is a least fixed point of F".

@ The definitional extension resulting from M is the theory
(Lu{f},TU{D}).

14

Examples

@ Empty function:
AN :Z—~2Z. X\n:Z.f(n)

@ Empty function:
AN :Z—~Z. An:Z.f(n)+ 1

@ [actorial:
Af:N—=N.An:N.if(n=0,1,f(n—1)%n).
@ Sum:
ANo:ZxZx(Z—~R)—R.
rmn:Zf.Z—~R.
if(m < n,o(m,n—1,f)+ f(n),0).

15

