
CAS 701 Fall 2008

07 Recursion and Induction

William M. Farmer

Department of Computing and Software
McMaster University

26 November 2008

What are Recursion and Induction?

Recursion is a method of defining a structure or operation
in terms of itself.

I One of the most fundamental ideas of computing.
I Can make some specifications, descriptions, and

programs easier to express and prove correct.

Induction is a method of proof based on a recursively
defined structure.

I The recursively defined structure and the proof method
are specified by an induction principle.

I Induction is especially useful for proving properties about
recursively defined operations.

The terms “recursion” and “induction” are often used
interchangeably.

2

Example: Natural Numbers

Recursive definition of N:

1. 0 ∈ N.
2. If n ∈ N, then S(n) ∈ N.
3. The members of N are distinct (no confusion).
4. N is the smallest such set (no junk).

Induction principle for N:

∀P : N → ∗ .
[P(0) ∧ (∀ x : N . P(x) ⇒ P(S(x)))]

⇒
∀ x : N . P(x)

This induction principle is also called mathematical
induction.

3

Example: Stacks of Natural Numbers

Recursive definition of Stack:

1. Bottom ∈ Stack.
2. If n ∈ N and s ∈ Stack, then Push(n, s) ∈ Stack.
3. The members of Stack are distinct (no confusion).
4. Stack is the smallest such set (no junk).

Induction principle for Stack:

∀P : Stack → ∗ .
[P(Bottom) ∧
(∀ s : Stack . P(s) ⇒ (∀ n : N . P(Push(n, s)))]

⇒
∀ s : Stack . P(s)

4

Recursive Function Definitions

Recursion is extremely useful for defining functions.

I Can facilitate both reasoning and computation.

A faulty recursive definition may lead to inconsistencies.

I Example: ∀ n : N . f (n) = f (n) + 1.

There are several schemes for defining functions by
recursion.

5

Recursive Definition Schemes

Each scheme has a set of instance requirements.

A scheme is proper if every instance of the scheme
actually defines a function.

The domain of a scheme is the set of functions f such
that f is definable by some instance of the scheme.

Designers of mechanized mathematics systems prefer
schemes which:

I Are proper.
I Have easily checked instance requirements.
I Have a large domain of useful functions.

6

The Primitive Recursive Functions (1/2)

The class P of primitive recursive functions is the
smallest set of f : N× · · · ×N → N closed under the
following rules:

1. Successor Function (λ x : N . x + 1) ∈ P.
2. Constant Functions Each (λ x1, . . . , xn : N . m) ∈ P

where 0 ≤ m, n.
3. Projection Functions Each (λ x1, . . . , xn : N . xi) ∈ P

where 1 ≤ n and 1 ≤ i ≤ n.
4. Composition If g1, . . . , gm, h ∈ P, then f ∈ P where:

∀ x1, . . . , xn : N .
f (x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

5. Primitive Recursion If g , h ∈ P, then f ∈ P where:

∀ x2, . . . , xn : N . f (0, x2, . . . , xn) = g(x2, . . . , xn).
∀ x1, . . . , xn : N .

f (x1 + 1, x2, . . . , xn) =
h(x1, f (x1, x2, . . . , xn), x2, . . . , xn).

7

The Primitive Recursive Functions (2/2)

Example. The factorial function f : N → N is defined by:

1. f (0) = g() = 1.
2. f (n + 1) = h(n, f (n)) where h(x , y) = y ∗ (x + 1).

The primitive recursion scheme is proper.

P is a very large, but proper, subset of the computable
total functions on N.

I P contains almost all functions on N commonly found in
mathematics.

Theorem. There exists a computable total function
f : N → N such that f 6∈ P .

Proof: Construct f by diagonalization.

8

Well-Founded Relations

A relation R ⊆ A× A is well-founded, if for all nonempty
B ⊆ A, there is some a ∈ B such that, for all b ∈ B ,
¬(b R a).

I a is called an R-least element of B.

Proposition. If R is a strict total order, then R is
well-founded iff R is a well-order.

9

Well-Founded Recursion

A definition via well-founded recursion is a tuple
W = (T , f , D, R) where

I T = (L, Γ) is a theory.
I f is a constant of type α → α not in L.
I D is a sentence of the form

∀ x . f (x) = E (f (a1(x)), . . . , f (ak(x))).

I R is a well-founded relation on α.

W defines f to be a total function in T by well-founded
recursion if:

1. T |= ∀ x . R-least(x) ⇒ E (f (a1(x)), . . . , f (ak(x)) = t
for some term t of L.

2. T |= ∀ x . ¬R-least(x) ⇒ a1(x) R x ∧ · · · ∧ ak(x) R x .

The definitional extension resulting from W is the theory
(L ∪ {f }, Γ ∪ {D}).

10

Example

Let W = (P , f , D, <) where

I P is first-order Peano arithmetic.
I f : N → N..
I D is

∀ n . f (n) = if(n = 0, 1, f (n − 1) ∗ n).

I < is the usual order on N.

The W defines the factorial function in P .

11

Structural Recursion and Induction

Structural recursion is a disguised form of well-founded
recursion in which the well-founded relation is a
less-structure to more-structure relationship.

Examples of sets defined by structural recursion:

I Inductive data types such as lists, trees, and stacks.
I Formal languages such as programming languages, the

terms of FOL, and the formulas of FOL.

Structural induction is induction over a set defined by
structural recursion.

Structural induction principle: A property P holds for all
members of a set S defined by structural recursion if:

1. P holds for all members of S having minimal structure.
2. P holds for a structural combination of members of S

whenever it holds for the members themselves.

12

Monotone Functionals

A functional is an expression of type α ⇀ α where
α = α1 × · · · × αn ⇀ αn+1.

Subfunction:
∀ g , h : α . g vα h ⇔
∀ x1 : α1, . . . , xn : αn . g(x1, . . . , xn)↓ ⇒
g(x1, . . . , xn) = h(x1, . . . , xn).

Monotone:
∀F : α ⇀ α . monotoneα(F) ⇔
∀ g , h : α . g vα h ⇒ F (g) vα F (h).

Fixed Point Theorem. Every monotone functional has a
least fixed point.

Proof: F γ(4α) must be a fixed point for some ordinal γ,
where 4α is the empty function of type α.

13

Monotone Functional Recursion

A recursive definition via a monotone functional is a triple
M = (T , f , F) where:

I T = (L, Γ) is a theory (in a higher-order logic that
admits partial functions).

I f is a constant of type α not in L.
I F is a functional of type α ⇀ α which is monotone in T .

The defining axiom of M is D which says
“f is a least fixed point of F”.

The definitional extension resulting from M is the theory
(L ∪ {f }, Γ ∪ {D}).

14

Examples

Empty function:
λ f : Z ⇀ Z . λ n : Z . f (n).

Empty function:
λ f : Z ⇀ Z . λ n : Z . f (n) + 1.

Factorial:
λ f : N ⇀ N . λ n : N . if(n = 0, 1, f (n − 1) ∗ n).

Sum:
λ σ : Z× Z× (Z ⇀ R) ⇀ R .

λ m, n : Z, f : Z ⇀ R .
if(m ≤ n, σ(m, n − 1, f) + f (n), 0).

15

