

CAS 734 Winter 2005

02 The Axiomatic Method

Instructor: W. M. Farmer

Revised: 11 January 2005

What is Mathematics?

The essence of mathematics is a process consisting of three intertwined activities:

1. **Model creation:** Mathematical models representing mathematical aspects of the world are created.
2. **Model exploration:** The models are explored by:
 - a. Stating and proving conjectures.
 - b. Performing calculations.
 - c. Creating and studying visual representations.
3. **Model connection:** Models with similar structure are connected to each other to facilitate the creation and exploration of new models.

What is a Logic?

- Informally, a logic is a system of reasoning.
- Formally, a **logic** is a family of **formal languages** with:
 1. A common syntax.
 2. A common semantics.
 3. A notion of **logical consequence**.
- A logic may include a **proof system** for **proving** that a given formula is a logical consequence of a given set of formulas.
- Examples:
 - Propositional logic.
 - First-order logic.
 - Simple type theory (higher-order logic).
 - Zermelo-Fraenkel set theory.

Language Syntax

- A language defines a collection of **expressions** formed from:
 - **Variables**.
 - **Constants** (nonlogical constants).
 - **Constructors** (logical constants).
- Two kinds of expressions:
 - **Terms**: Denote objects or values.
 - **Formulas**: Make assertions about objects or values.
- Some languages have constructors that bind variables (e.g., \forall , \exists , λ , I , ϵ , $\{ \mid \}$).

Language Semantics

- A **model** M for a language L is a pair (D, V) where:
 1. D is a set of values called the **domain** that includes the truth values t and f .
 2. V is a function from the expressions of L to D called the **valuation function**.
- M **satisfies** a formula A of L , written $M \models A$, if $V(A) = t$.
- M **satisfies** a set Σ of formulas of L , written $M \models \Sigma$, if M satisfies each $A \in \Sigma$.
- Σ is **satisfiable** if there exists some model for L that satisfies Σ .
- A is **valid**, written $\models A$, if every model for L satisfies A .
- A is a **logical consequence** of Σ , written $\Sigma \models A$, if every model for L that satisfies Σ also satisfies A .

Hilbert-Style Proof System

- A **Hilbert-style proof system** \mathbf{H} for a language L consists of:
 1. A set of formulas of L called **logical axioms**.
 2. A set of **rules of inference**.
- A **proof** of A from Σ in \mathbf{H} is a finite sequence B_1, \dots, B_n of formulas of L with $B_n = A$ such that each B_i is either a logical axiom, a member of Σ , or follows from earlier B_j by one of the rules of inference.
- A is **provable** from Σ in \mathbf{H} , written $\Sigma \vdash_{\mathbf{H}} A$, if there is a proof of A from Σ in \mathbf{H} .
- A is a **theorem** in \mathbf{H} , written $\vdash_{\mathbf{H}} A$, if A is provable from \emptyset in \mathbf{H} .
- Σ is **consistent** in \mathbf{H} if not every formula is provable from Σ in \mathbf{H} .

Kinds of Proof Systems

- Hilbert style.
- Symmetric sequent (Gentzen).
- Asymmetric sequent.
- Natural deduction (Quine, Fitch, Berry).
- Semantic tableaux (Beth, Hintikka).
- Resolution (J. Robinson).

Soundness and Completeness

- Let \mathbf{P} be a proof system for a language L .
- \mathbf{P} is **sound** if

$$\Sigma \vdash_{\mathbf{P}} A \text{ implies } \Sigma \models A.$$

- \mathbf{P} is **complete** if

$$\Sigma \models A \text{ implies } \Sigma \vdash_{\mathbf{P}} A.$$

Theories

- A **(axiomatic) theory** is a pair $T = (L, \Gamma)$ where:
 1. L is a language (the **language** of T).
 2. Γ is a set of formulas of L (the **axioms** of T).
- M is a **model** of T , written $M \models T$, if $M \models \Gamma$.
- A is **valid** in T , written $T \models A$, if $\Gamma \models A$.
- A is a **theorem** of T in \mathbf{P} , written $T \vdash_{\mathbf{P}} A$, if $\Gamma \vdash_{\mathbf{P}} A$.
- T is **satisfiable** if Γ is satisfiable.
- T is **consistent** in \mathbf{P} if Γ is consistent in \mathbf{P} .

Logical View of Mathematical Problem Solving

Problem: Is $T \models A$ true?

Solution: Either

1. A **proof** showing $T \vdash_{\mathbf{P}} A$ for some sound proof system \mathbf{P} for the language of T or
2. A **counterexample** in the form of a model M of T such that $M \models \neg A$.

What is the Axiomatic Method?

1. A mathematical model is expressed as a **theory** in a logic.
2. New concepts are introduced by making **definitions**.
3. Assertions about the model are stated as **theorems** and proved from the axioms using the laws of the logic.

Notes:

- The axiomatic method is a method of **communication**, not a method of **discovery** (Lakatos).
- The axiomatic method can be used as a method of **organization** and a method of **certification**.

History (1)

- Euclid (325–265 BC) used the axiomatic method to present the mathematics known in his time in the **Elements**.
 - The axioms were considered truths.
- The development of **noneuclidean geometry** by Bolyai, Gauss, and Lobachevskii (early 1800s) showed that axioms may be considered as just assumptions.
- Whitehead and Russell formalized a major portion of mathematics in the **Principia Mathematica** (1910–13).
- Bourbaki (mid 1900s) used the axiomatic method to codify mathematics in the 30 volume **Eléments de mathématique**.

History (2)

- Jutting (1970s) used De Bruijn's Automath proof assistant to formalize and verify Landau's **Grundlagen der Analysis**.
- Several libraries of formalized mathematics have been developed since the late 1980s using interactive theorem provers: Coq, HOL, IMPS, Isabelle, Mizar, Nqthm/ACL2, Nuprl, PVS.

Example: Theory of Partial Order

- Language: A language of first-order logic with a binary predicate symbol \leq .
 - $a \leq b$ is intended to mean a is less than or equal to b .
- Axioms:
 - **Reflexivity**. $\forall x . x \leq x$.
 - **Transitivity**. $\forall x, y, z . (x \leq y \wedge y \leq z) \Rightarrow x \leq z$.
 - **Antisymmetry**. $\forall x, y . (x \leq y \wedge y \leq x) \Rightarrow x = y$.
- The theory has infinitely many nonisomorphic models.

Example: Peano Arithmetic

- Language: A language of second-order logic with a constant symbol 0 and unary function symbol S .
 - 0 is intended to represent the number zero.
 - S is intended to represent the successor function, i.e., $S(a)$ means $a + 1$.
- Axioms:
 - **0 has no predecessor.** $\forall x . \neg(0 = S(x))$.
 - **S is injective.** $\forall x, y . S(x) = S(y) \Rightarrow x = y$.
 - **Induction principle.**
 $\forall P . (P(0) \wedge \forall x . P(x) \Rightarrow P(S(x))) \Rightarrow \forall x . P(x)$.
- Second-order Peano arithmetic is **categorical**, i.e, it has exactly one model up to isomorphism.

Benefits of the Axiomatic Method

1. **Conceptual clarity:** inessential details are omitted.
2. **Generality:** theorems hold in all models.
3. **Dual purpose:** a theory can be viewed as:
 - a. An abstract mathematical model.
 - b. A specification of a collection of mathematical models.

Shortcomings of the Axiomatic Method

1. Used with logics that do not conform to mathematical practice.
 - Are **theory oriented** rather than **practice oriented**.
2. Does not reflect how mathematics is discovered (Lakatos).
 - For example, there is no place for **counterexamples**.
3. Does not provide the means to build complex theories in sophisticated ways from simpler theories.
 - No distinction between **conservative** and **nonconservative** extensions.
4. Assumes everything is done within one (big) theory.
 - No means for **connecting theories** so that they can be used together.
 - No means for **parallel development** and **perspective switching**.

Attributes of Practice-Oriented Logics

- **Undefined terms:** Terms may be nondenoting.
- **Support for functions:** Functions may be partial, higher-order, and specified by lambda-abstraction.
- **Higher-order quantification:** Quantification is allowed over functions, relations, sets, etc.
- **System for classifying terms by value:** Terms are classified according to their values (using sorts or types).
- **Definite and indefinite description:** Terms may be formed from definite and indefinite descriptions.
- **Support for reasoning about syntax:** Expressions can denote both semantic values and syntactic expressions.

The Lakatosian Insight

- Presented by **Imre Lakatos** in *Proofs and Refutations*, Cambridge University Press, 1976.
- Mathematical reasoning is dialectical.
 - Dialectic between a theory and its theorems.
 - Dialectic between a conjecture and its proof.
- New mathematics is discovered by analyzing the proofs of conjectures according to the **method of proof and refutations**.
- The definition-theorem-proof style of presentation hides the true nature of mathematics.

Method of Proofs and Refutations

1. Propose a **conjecture** (which may actually be false).
2. Formulate a **proof experiment** that reduces the conjecture to a set of **subconjectures** (lemmas).
3. Look for **local counterexamples** to the subconjectures.
4. If a counterexample is not a **global counterexample** to the conjecture, use it to improve the subconjecture.
5. If it is a global counterexample, use it to improve the conjecture.
6. Start the process over with the improved conjecture.

Methods for Improving Conjectures

1. Monster barring:

- Modify some of the definitions so that the counterexample is eliminated.
- Both the conjecture and the proof experiment are unchanged.

2. Exception barring:

- Add a condition to the conjecture so that the counterexample is eliminated.
- Both the conjecture and the proof experiment are changed.

3. Lemma incorporation:

- Make the truth of the subconjecture a condition to the conjecture.
- The conjecture is changed, but the proof experiment is not.

Little Theories Method

- A complex body of mathematics is represented as a **network of theories**.
 - Bigger theories are composed of smaller theories.
 - Theories are linked by **interpretations**.
 - Reasoning is distributed over the network.
- Benefits:
 - Mathematics can be developed in the right language at the right level of abstraction.
 - Emphasizes reuse: if A is a theorem of T , then A may be reused in any “instance” of T .
 - Enables perspective switching.
 - Enables parallel development.
 - Inconsistency can be isolated.
- Implemented in IMPS.

Conclusion

- For the purpose of formalized mathematics, the axiomatic method needs to be expanded to include:
 1. Practice-oriented logics.
 2. Lakatos' method of proofs and refutations.
 3. The little theories method.
- This **expanded axiomatic method** provides an effective framework for **discovering, organizing, communicating, and certifying** mathematical knowledge.