CAS 734 Winter 2005

03 Interactive Theorem
Proving Systems

Instructor: W. M. Farmer

Revised: 18 January 2005

Mechanized Mathematics Systems

e A mechanized mathematics system (MMS) is a
software system that is intended to automate, manage,
and improve parts of the mathematics process.

— Employs deductive and computational technology.

e [hree major types of MMSs:

1. Computer theorem proving systems.
— Automated theorem provers.

— Interactive theorem proving systems (ITPSs).
— Proof checkers.
2. Computer algebra systems.
— Macsyma, Maple, Mathematica, etc.
— Axiom.

3. Interactive mathematics laboratories.
— Do not exist yet.

Computer Theorem Proving Systems

e Support “axiomatic mathematics’.

— Mathematics is represented by axiomatic theories.
— Reasoning is performed by proving conjectures.
— Most emphasize proof checking or proof development.

e Strengths:

— Based on rigorous logical foundations.
— Support a wide range of mathematics.

e \\Veaknesses:

— Very difficult to use.
— Poor support for routine computation.

— Abstract theories are emphasized over concrete
structures.

Computer Algebra Systems

e Support “algorithmic mathematics’.

— Mathematics is represented by algorithms.
— Reasoning is performed by computation.

e Strengths:

— Perform fast, sophisticated symbolic computations.
— Relatively easy to use.

e \\Veaknesses:

— Not based on a rigorous logical foundation.

— Poor support for “context guided” computation.

— Concrete structures are emphasized over abstract
theories.

Interactive Mathematics Laboratories

e An interactive mathematics laboratory (IML) is an
MMS that:

— Is widely accessible.
— Facilitates many kinds of mathematical activity.

— Combines the capabilities of both computer theorem
proving systems and computer algebra systems.

e An IML offers an environment that is:

— Formal.
— Interactive.
— Mechanized.

e IMLs do not exist today, but much of the technology
needed to build one does exist.

Components of an IML

1. Mathematics library.

e Mathematical knowledge is stored dynamically.
e Includes both axiomatic and algorithmic mathematics.
e \Web accessible.

2. Reasoning engine.

e [heory development facility.
e Deduction/computation workbench.

3. User interface.

e Supports multiple styles of interaction.
o Offers a range of exploratory tools.
e Provides notational freedom.

Impact of an IML

e [ransform how people learn and practice mathematics.

— People would have greater mathematical reach.

— Students would learn more mathematics by being able
to do more mathematics.

e Students, engineers, scientists would likely benefit more
than mathematicians.

e [he mathematical competency of society would be raised.

Obstacles to Building an IML

1.

2.

The development cost is very high.

The mathematics community is apathetic.

. Very few people have expertise or training in formalized

mathematics.

. There is very limited interaction between the computer

theorem proving and computer algebra fields.

. To be effective, a mathematics library must include many

kinds of mathematics and be carefully organized.

. T he design of an IML requires sophisticated software

engineering.

. Traditional logics are not suited to be the underlying logic

of an IML.

Leading ITPSs
e CO(C.
e HOL.
o IMPS.
e Isabelle.
e Mizar.
e Ngthm/ACL2.
e Nuprl.

e PVS.

LogicC

Kinds of logic commonly used by ITPSs:
e Equational logic.
e First-order logic.

e Type theory (higher-order logic).

— Simple type theory (Church’s type system).
— Constructive type theory.

e Set theory.

— Zermelo-Fraenkel set theory.
— NBG (von-Neuman-Bernays-Godel) set theory.
— Stronger set theories.

10

Logical Foundation

e Fixed logic.

— Single theory supplied with system.
— User-defined theories without interoperability.
— User-defined theories with interoperability.

e Logical framework.

— User-defined logics without interoperability.
— User-defined logics with interoperability.

11

Proof Construction
e Automated proof search.

e Proof checking.

— T he correctness of a proof tree is automatically checked.

— A proof tree is interactively constructed, either
forwards or backwards, by applying rules of inference.

— A deduction is interactively constructed in which the
inferences are automatically checked.

e Goal reduction by the application of tactics.

— “Pure” tactics that only apply rules of inference.

— “Impure” tactics that apply decision procedures, rewrite
rules, algebraic simplification, etc. for which
correctness is not proven in the logic.

12

Proof Representation

e Descriptive: proof object that was constructed.

— Qutside of logic.
— Inside logic (e.g., lambda-term).

e Prescriptive: proof script used to construct the proof.

— Sequence of low-level commands (not robust).
— Sequence of high-level commands (robust).

e Both descriptive and prescriptive proof representations
may be translated to natural language.

13

Techniques for Achieving Correctness
e Automatically check final results.

e Check final results using a small program (de Bruijn
criterion).

— The small program should be independently developed
and could be formally verified.

e All mathematical reasoning is done within one system-
supplied theory (foundationalist criterion).

— A related technique is to show that all mathematical
reasoning can be interpreted in the system-supplied
theory.

e [he correctness of computations is proved

— Inside the logic or

— Qutside of the logic.
14

Some Concluding Remarks

e On one hand, the logical foundation should be as simple
and familiar as possible.

— Makes the learning process easier for users.
— Makes it easier to design and implement the system.

e On the other hand, the logical foundation should be as
expressive and powerful as possible.

— Makes it easier to support mathematical practice.
— Makes it easier to do everything within the logic.

e On one hand, the user needs to understand and control
the reasoning process.

e On the other hand, the reasoning process needs to be
highly automated.

15

