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Overview

• A definition defines a symbol or expression to have a

designated value (assuming the value exists).

• A specification defines a symbol or expression to have a

value in a designated set of values (assuming the set is

nonempty).

• A body of formalized mathematics is specified in an ITPS

using the ITPS’s definition and specification mechanisms.

• Kinds of definition and specification mechanisms:

– Notational definitions.

– Mechanisms for specifying and extending the logic.

– Mechanisms for specifying and extending theories.

– Mechanisms for extending theories conservatively.
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Notational Definitions

• A notational definition introduces alternate syntax that

can be used in place of official syntax.

– Usually the alternate syntax is simpler than the

corresponding official syntax.

– Sometimes the alternate syntax is purely external, while

the official syntax is purely internal.

– Notational definitions often hide information such as

types and parenthesization.

• Notational definitions are intended to make it easier for

the user to read and write expressions.

– They should have no effect on the system’s logic,

theories, and reasoning mechanisms.

– Notational definitions that hide information may

sometimes confuse users.
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Kinds of Notational Definitions

• Macro-abbreviations

• Alternate (usually shorter) names

• Operator syntax (e.g, prefix, infix, postfix, etc.)

• Operator precedence

• Symbol overloading
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Theory Extension

• Throughout this presentation we will assume that we are
working in STT, a simple version of Church’s type theory.

• Let Li = (Ci, τi) be a language of STT for i = 1,2. L2

is an extension of L1 (and L1 is a sublanguage of L2),
written L1 ≤ L2, if C1 ⊆ C2 and τ1 is a subfunction of τ2.

• Let Ti = (Li,Γi) be a theory of STT for i = 1,2. T2 is an
extension of T1 (and T1 is a subtheory of T2), written
T1 ≤ T2, if L1 ≤ L2 and Γ1 ⊆ Γ2.

• Hence an extension of a theory T is obtained by adding
new vocabulary and axioms to T .

• Danger of theory extension: The new machinery may
compromise the old machinery by changing the behavior
of the constants or by making the theory unsatisfiable.
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Conservative Extension

• Intuitively, an extension of a theory T is “conservative”

if it adds new machinery to T without compromising the

original machinery.

• T2 is a (|=-) conservative extension of T1, written

T1 � T2, if T1 ≤ T2 and, for all formulas A of L1,

T2 |= A implies T1 |= A.

• Proposition (Transitivity). If T1 � T2 and T2 � T3, then

T1 � T3.

• Proposition (Satisfiability). If T1 � T2 and T1 is

satisfiable, then T2 is satisfiable.

• Hence a conservative extension is a “safe” extension.
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Model Conservative Extension

• Let Mi = (Di, Ii) be a general model for Li for i = 1,2.

M2 is expansion of M1 if L1 ≤ L2, D1 = D2, and I1 is a

subfunction of I2.

• T2 is a (standard) model conservative extension of

T1, written T1�m T2, if T1 ≤ T2 and every standard model

of T1 has an expansion to L2 that is a model of T2. .

• Proposition (Transitivity). If T1 �m T2 and T2 �m T3,

then T1 �m T3.

• Proposition. If T1 �m T2, then T1 � T2. (The converse is

false.)

• Hence a model conservative extension of T is a conser-

vative extension of T that “preserves” the models of T .
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Other Notions of Conservativity

• T2 is a `P-conservative extension of T1, written

T1 �`P
T2, if T1 ≤ T2 and, for all formulas A of L1,

T2 `P A implies T1 `P A.

• T2 is a |=g-conservative extension of T1, written

T1 �|=g
T2, if T1 ≤ T2 and, for all formulas A of L1,

T2 |=g A implies T1 |=g A.

• T2 is a general model conservative extension of T1,

written T1 �gm T2, if T1 ≤ T2 and every general model of

T1 has an expansion to L2 that is a model of T2. .
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Some Other Conservativity Theorems

• Proposition. If P is sound and complete for STT with

respect to general models, then

T1 �`P
T2 iff T1 �|=g

T2.

• Proposition. If T1�gmT2, then T1�|=g
T2. (The converse

is false.)

• Proposition. If T1 �gm T2, then T1 �m T2. (The converse

is false.)
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Explicit Definitions

• Let T = (L,Γ) be a theory where L = (C, τ), a be a new

constant not in L, E be a closed expression of type α of

L, and L′ = (C ∪ {a}, τ ′) where τ ′(c) = τ(c) for all a ∈ C
with c 6= a and τ ′(a) = α.

• An explicit definition in T is a pair D = (a, E) such that

T |= ∃ !x : α . x = E. a = E is called the defining axiom

of D.

• The extension of T by D, written T [D], is the theory

T ′ = (L′,Γ ∪ {a = E}).

• Proposition. T �m T [D].

• The new constant a can be eliminated from expressions

of L′ by using the defining axiom of D as a rewrite rule.
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Implicit Definitions

• Let T = (L,Γ) be a theory where L = (C, τ), a be a new
constant not in L, A is a formula of L containing one
free variable x of type α, and L′ = (C ∪ {a}, τ ′) where
τ ′(c) = τ(c) for all a ∈ C with c 6= a and τ ′(a) = α.

• An implicit definition in T is a pair D = (a, P ) where
P = λ x : α . A such that T |= ∃ !x : α . A. P (a) is called
the defining axiom of D.

• The extension of T by D, written T [D], is the theory
T ′ = (L′,Γ ∪ {P (a)}).

• Proposition. T �m T [D].

• The new constant a can be eliminated from expressions
of L′ by using the equation a = Ix : α . A as a rewrite
rule.
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Mutual Definitions

• Let T = (L,Γ) be a theory where L = (C, τ), a1, . . . , an be

a list of new constants not in L, A is a formula of L

containing n free variables x1, . . . , xn of type α1, . . . , αn,

and L′ = (C ∪ {a, . . . , an}, τ ′) where τ ′(c) = τ(c) for all

a ∈ C with c 6∈ {a1, . . . , an} and τ ′(ai) = αi for all i with

1 ≤ i ≤ n.

• An mutual definition in T is a pair D = (〈a1, . . . , an〉, P )

where P = λ x1 : α1 . · · ·λ xn : αn . A such that

T |= ∃ !x1 : α1 . · · · ∃ !xn : αn . A. P (a1) · · · (an) is called

the defining axiom of D.

• The extension of T by D, written T [D], is the theory

T ′ = (L′,Γ ∪ {P (a1) · · · (an)}).

• Proposition. T �m T [D].
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Profiles

• Let T = (L,Γ) be a theory where L = (C, τ), a be a new

constant not in L, A is a formula of L containing one

free variable x of type α, and L′ = (C ∪ {a}, τ ′) where

τ ′(c) = τ(c) for all a ∈ C with c 6= a and τ ′(a) = α.

• A profile in T is a pair S = (a, P ) where P = λ x : α . A

such that T |= ∃x : α . A. P (a) is called the profiling

axiom of S.

• The extension of T by S, written T [S], is the theory T ′ =
(L′,Γ ∪ {P (a)}).

• Proposition. T �m T [S].

• It may not be possible to eliminate the new constant a

from expressions of L′ (even using indefinite description).
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Mutual Profiles

• Let T = (L,Γ) be a theory where L = (C, τ), a1, . . . , an be

a list of new constants not in L, A is a formula of L

containing n free variables x1, . . . , xn of type α1, . . . , αn,

and L′ = (C ∪ {a, . . . , an}, τ ′) where τ ′(c) = τ(c) for all

a ∈ C with c 6∈ {a1, . . . , an} and τ ′(ai) = αi for all i with

1 ≤ i ≤ n.

• A mutual profile in T is a pair S = (〈a1, . . . , an〉, P ) where

P = λ x1 : α1 . · · ·λ xn : αn . A such that

T |= ∃x1 : α1 . · · · ∃xn : αn . A. P (a1) · · · (an) is called the

profiling axiom of S.

• The extension of T by S, written T [S], is the theory T ′ =
(L′,Γ ∪ {P (a1) · · · (an)}).

• Proposition. T �m T [S].
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Recursive Definitions

• A recursive definition is an implicit definition (a, P ) such
that the defining axiom P (a) relates a to itself.

• A mutual recursive definition is a mutual definition
(〈a1, . . . , an〉, P ) such that the defining axiom P (a1) · · · (an)
relates a1, . . . , an to each other.

• A (mutual) recursive definition can be expressed as an
explicit definition using definite description.

• A (mutual) recursive definition often provides a way of
computing the value of certain expressions involving the
defined constants.

– Example: The value of an application f(a) where f is
a recursively defined function.

– Example: The value of a membership formula a ∈ s

where s is a recursively (inductively) defined set.
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Type Definitions and Specifications

• A base type specification introduces a new type of

individuals.

• A subtype definition introduces a new type that denotes

a designated nonempty subtype of an existing type.

• A subtype specification introduces a new type that

denotes a member of a designated nonempty set of nonempty

subtypes of an existing type.

• Each of the definition and specification principles above

is model conservative.
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Inductive Data Types

• An inductive data type consists of:

1. A domain of values (data elements).

2. A set of constructors that “construct” the values in
D.

3. A set of selectors that “deconstruct” the values in D.
4. A sentence that states that each member of D can

only be constructed in one way (i.e., “no confusion”).
5. A sentence that states that D is inductively defined by

the constructors (i.e., “no junk”).

6. A sentence that defines the selectors.

• An inductive data type specification in T is a tuple S =
(α, 〈c1, . . . , cm〉, 〈s1, . . . , sn〉, A1, A2, A3) whose components
correspond to the components of an inductive data type.

• Proposition. The extension of T by S is model conser-
vative if there exists a domain of values, a set of con-
structors, and a set of selectors that satisfy A1, A2, A3.
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Proliferation of Conservative Extensions

• Problem: Liberal use of conservative extension results

in a proliferation of different theories that are essentially

equivalent.

• Solution:

1. Whenever a theory T is conservatively extended to T ′,
overwrite T with T ′.

2. Record the “development” of a theory (e.g., to

facilitate linking theories with interpretations).
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Conservative Stacks

• A conservative stack is a finite sequence Σ = 〈T0, . . . , Tn〉
of theories such that Ti � Ti+1 for all i with 0 ≤ i < n.

– T0 is the base theory of Σ.

– Tn is the theory of Σ.

• A conservative stack Σ = 〈T0, . . . , Tn〉 is conservatively

extended by overwriting Σ with Σ′ = 〈T0, . . . , Tn, Tn+1〉
where Tn � Tn+1.

• A theory can be implemented as a theory object that

includes a conservative stack Σ and a set of the currently

known theorems of the theory of Σ.
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