

CAS 734 Winter 2005

09 Symbolic Computation in Formal Proofs

Instructor: W. M. Farmer

Revised: 23 March 2005

Kinds of Symbolic Computation

- Tactics.
- Decision procedures.
- Simplification procedures.
- Problem-solving procedures.
- Hybrid procedures.

Tactics

- A **tactic** is a program that reduces a goal in a proof to a set of subgoals by applying the rules of inference of the proof system.
- Issues of concern:
 - Transparency: Are the intermediate steps taken by a tactic accessible?
 - Coverage: What kind of techniques can be effectively formalized as tactics?
- Examples:
 - Logical simplification.
 - Applying theorems.
 - Performing proof by induction.

Decision Procedures

- A **decision procedure** for a set \mathcal{S} of formulas of a theory T is an algorithm that answers whether or not $T \models A$ is true for each $A \in \mathcal{S}$.
- Issues of concern:
 - Coverage: How big is \mathcal{S} ?
 - Efficiency: How fast is the algorithm?
 - Correctness: How trustworthy is the algorithm?
 - Combination: How can different decision procedures be combined?
- Techniques:
 - Binary decision diagrams (BDDs).
 - Automated theorem proving techniques based on, for example, resolution and semantic tableaux.
 - Term rewriting.
 - Quantifier elimination.

Quantifier Elimination

- A **quantifier elimination** method for a set \mathcal{S} of formulas of a theory T consists of:
 - A set \mathcal{B} of **basic formulas** such that it is easy to answer whether or not $T \models B$ for each $B \in \mathcal{B}$. (\mathcal{B} is often a set of quantifier-free formulas.)
 - An algorithm that, given a formula $A \in \mathcal{S}$, produces a boolean combination C of members of \mathcal{B} such that $T \models A \Leftrightarrow C$. (The key step in the algorithm “eliminates quantifiers”.)
- Decision procedures based on quantifier elimination:
 - Additive number theory (Presburger 1929).
 - Multiplicative number theory (Skolem 1930).
 - Real closed fields (Tarski 1948).
 - Algebraically closed fields (Tarski 1948).

Simplification Procedures

- A **simplification procedure** for a set S of expressions of a theory T is an algorithm that, given an expression $E \in S$, returns a “simpler” expression E' such that $T \models E = E'$.
- Issues of concern:
 - Simplicity: How is simplicity measured?
 - Order of operation: What is done first, second, etc.?
 - Persistence: When does the algorithm give up?
- Examples:
 - Logical simplification.
 - Arithmetic evaluation.
 - Function application evaluation.
 - Term rewriting.
 - Algebraic simplification (using cancellation and collecting like terms).

Computational Domains

- A **computational domain** is a set of data structures that represents a set of mathematical elements (such as the integers) and a set of operations on the data structures that implement mathematical functions (such as addition and multiplication).
- The Axiom system has a sophisticated programming language for constructing computational domains.

Computational Models

- A **computational model** is a set of simplification procedures for a theory T that use the data structures and operations of a computational domain D .
 - The simplification procedures utilize a bidirectional mapping from part of the language of T to the language of D .
- One domain can serve several computational models.
- The IMPS theory h-o-real-arithmetic has two computational models, one for arithmetic over the integers and one for arithmetic over the rational numbers.

Problem-Solving Procedures

- A **problem-solving procedure** for a set S of existential formulas of a theory T is an algorithm that, given a problem represented as a formula $\exists x . A$ in S , returns a solution represented as an expression E such that $T \models A[x \mapsto E]$.
- Issues of concern:
 - Multiple solutions: Which solution should be chosen if there is more than one?
 - Representation: How should a set of solutions be represented?
- Techniques:
 - Unification.
 - Logic programming.

Hybrid Procedures

- A **hybrid procedure** for a theory T is an algorithm that combines decision, simplification, and problem-solving techniques.
- Example: IMPS simplifier.
- Advantages:
 - One big procedure replaces several little procedures.
 - The procedure can provide partial solutions.
- Disadvantages:
 - Difficult to design and implement due to competing goals.
 - The procedure can produce solutions that have both desirable and undesirable attributes.