CAS 734 Winter 2006

02 Review of Mathematical Logic

William M. Farmer

Department of Computing and Software
McMaster University

21 September 2006

W

2SS



Outline

What is mathematical logic?

Syntax and semantics of logical languages

)
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@ Proof systems
@ Axiomatic theories
)

Example: simple type theory



What is Mathematical Logic?

@ Study of the principles underlying mathematical
reasoning.

» Central idea: logical consequence.
@ Branch of mathematics.
@ Makes explicit several fundamental distinctions:

» Syntax vs. semantics.

» Language vs. metalanguage.
» Theory vs. model.

» Truth vs. proof.

@ Principal tools: formal systems called logics.



Syntax vs. Semantics
@ The syntax of a language is concerned with how the
expressions of the language are constructed.

» For example, “the numeral 144 has three digits” is a
statement about syntax.

@ The semantics of a language is concerned with what the
expressions of the language mean.

» For example, “the number 144 is a perfect square” is a
statement about semantics.

@ This distinction is crucial in mathematics and computing.

» Confusion between syntax and semantics is the source of
many errors.

@ Logic carefully disentangles the roles of syntax and
semantics In reasoning.



What is a Logic?

@ Informally, a logic is a system of reasoning.

@ Formally, a logic is a family of formal languages with:

1. A common syntax.
2. A common semantics.
3. A notion of logical consequence.

@ A logic may include a proof system for proving that a
given formula is a logical consequence of a given set of
formulas.

@ Examples:

Propositional logic.
First-order logic.
Simple type theory (higher-order logic).

>
>
>
» Zermelo-Fraenkel (zF) set theory.



Language Syntax

@ A language defines a collection of expressions formed
from:

» Variables.
» Constants (nonlogical constants).
» Constructors (logical constants).

@ Two kinds of expressions:

» Terms: Denote objects or values.
» Formulas: Make assertions about objects or values.

@ Some languages have constructors that bind variables
(eg..V, 4, N\ Le {]|}).



Language Semantics

@ A model M for a language L is a pair (D, V') where:

1. D is a set of values called the domain that includes the

truth values T and F.
2. V is a function from the expressions of L to D called the

valuation function.

@ M satisfies a formula A of L, written M = A, if
V(A) =T.

@ M satisfies a set ¥ of formulas of L, written M = %, if M
satisfies each A € Y.

@ Ais a semantic consequence of X, written & = A, if
every model for L that satisfies X also satisfies A.

@ Ais valid, written = A, if every model for L satisfies A.

@ 2 is satisfiable if there exists some model for L that
satisfies 2_.



Language vs. Metalanguage

@ A language is for talking about a certain subject.

@ A metalanguage for a language L is a language for talking
about L itself.

@ A natural language, such as English, usually serves as its
own metalanguage.

» As a result, the distinction is not explicit in English.

@ A formal language, such as a logical or programming
language, usually is not expressive enough to serve as its
own metalanguage.

» A metalanguage of a formal language may be a formal
language, but usually it is only informal.



Proof

@ Mathematical proof is an essential component of the
mathematics process which is unique to mathematics.

@ It is a method of communication, certification, and
discovery.

@ An informal proof is a convincing argument that a
statement about a mathematical model is true.

@ A formal proof is a logical deduction from a set of
premises to a conclusion.

» Can be mechanically checked.
@ A formal proof can be presented in two ways:

» As a description of the actual deduction.
» As a prescription for creating the deduction.



Hilbert-Style Proof Systems

@ A Hilbert-style proof system P for a language L consists
of:

1. A set of formulas of L called logical axioms.
2. A set of rules of inference.

@ A proof of A from X in P is a finite sequence By, ..., B,
of formulas of L with B,, = A such that each B; is either
a logical axiom, a member of X, or follows from earlier B;
by one of the rules of inference.

@ A is syntactic consequence of 2 in P, written X Fp A, if
there is a proof of A from X in P.

@ Ais a theorem in P, written Fp A, if there is a proof of
A from () in P.

@ X is consistent in P if not every formula is a syntactic
consequence of > in P.
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Kinds

of Proof Systems

Hilbert style.

Symmetric sequent (Gentzen).

Asymmetric sequent.

Natural deduction (Gentzen, Quine, Fitch, Berry).
Semantic tableaux (Beth, Hintikka).

Resolution (J. Robinson).
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Soundness and Completeness

@ Let P be a proof system for a language L.

@ P is sound if

2 Fp A implies ¥ = A
@ P is complete if

2 = A implies X Fp A

@ A unsound proof system is not usually very useful, while a
sound but incomplete proof system can be quite useful.
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Axiomatic Theories

@ A axiomatic theory is a pair T = (L, ') where:

1. Lis a language (the language of T).
2. [ is a set of formulas of L (the axioms of T).

M is a model of T, written M = T,ift M =T.
Aisvalid in T, written T = A, if [ = A.

T 1s satisfiable if [ is satisfiable.

T is consistent in P if [ is consistent in P.

Ais a theorem of T in P, written T Fp A, if [ Fp A.
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Theory vs. Model

@ A model for a language is a concrete mathematical model.
@ A axiomatic theory is an abstract mathematical model.

@ An axiomatic theory can be viewed as a specification of
its models.

» A theory is to a model as a specification is to an
implementation.

@ Axiomatic theories fall into two categories:

» Those that are intended to describe a single model
(e.g., a theory of natural number arithmetic).

» Those that are described a collection of models
(e.g., a theory of monoids).
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Truth vs. Proof

Semantics Syntax

truth proof

semantic consequence | syntactic consequence

A is valid A is a theorem in P

= A Fp A

Aisvalidin T A is a theorem of T in P
TEA THp A

T is satisfiable T is consistent in P

@ Semantic consequence and syntactic consequence are
different forms of logical consequence.

@ The semantic and syntactic notions are equivalent in the
most common logics:

» Propositional logic.
» First-order logic (Godel, 1930).

» Simple type theory (Henkin, 1950).
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Mathematical Problems: Fundamental Form

@ Most mathematical problems can be expressed as
statements of the form

TEA
where T Is an axiomatic theory and A is a formula.

@ There are three basic ways of deciding whether or not
T E A
1. Model checking:

Show that M = A for each model M of T.

2. Proof:
Show T Fp A for some sound proof system P.

3. Counterexample:
Show M = —A for some model M of T.
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What is Simple Type Theory?

@ A simple, elegant, highly expressive, and practical logic.

» Familiar to some computer scientists but not to many
mathematicians, engineers, and other scientists.

@ Most popular form of type theory.

» Types are used to classify expressions by value and
control the formation of expressions.

» Classical: nonconstructive, 2-valued.

» Higher order: quantification over functions.

» Can be viewed as a “function theory”.

@ Natural extension of first-order logic.

» Based on the same principles as first-order logic.
» Includes nth-order logic for all n > 1.

@ We will present a simple, pure form of simple type theory

called sTT.
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History of Simple Type Theory

1908

1910

1920s

1920-30s

1940

1950

1963

1980-90s

Russell

Ramified theory of types.

Russell, Whitehead

Principia Mathematica.

Chwistek, Ramsey

Simple theory of types (simple type theory).
Carnap, Godel, Tarski, Quine

Detailed formulations of simple type theory.
Church

Simple type theory with lambda-notation.
Henkin

General models and completeness theorem.
Henkin, Andrews

Concise formulation based on equality.

HOL, IMPS, Isabelle, ProofPower, PVS, TPS
Higher-order theorem proving systems.
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Syntax of STT: Types

@ A type of STT is defined by the following rules:

T1 Type of individuals
type|:] ( )

T2 Type of truth values
type|[x] ( )

typea], type[S]
type[(a — )]

@ Let 7 denote the set of types of STT.

T3

(Function type)
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Syntax of STT: Symbols

@ The logical symbols of STT are:

Function application: @ (hidden).

Function abstraction: A.

Equality: =.

Definite description: I (capital iota).

» An infinite set V' of symbols called variables.

>
>
>
>

@ A language of STT is a pair L = (C, 7) where:

» C is a set of symbols called constants.
» 7:C — 7T is a total function (which assigns a type to
each constant).
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@

Syntax of STT: Expressions (1)

An expression E of type o of a STT language L = (C,7) is
defined by the following rules:

x €V, typela]
EXpl’L[(X : Oé), a]

El (Variable)

E2 ced (Constant)

expr[c,7(c)]

eXpI’L[A, Oé], exprL[F, (Of — 6)]

=3 expr [F(A), ]

(Application)

x €V, typela], expr,[B,[]

E4 expr [(Ax:a. B),(a— 3)]

(Abstraction)
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Syntax of STT: Expressions (2)

exprL[E17 Ck]? exprL[E27 Ck]
expr,[(E1 = Ep), %]

Eb

x €V, typela], expr,[A, ]

E
0 expr, [(Ix:a.A) a

(Equality)

(Definite description)
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Syntax of STT: Conventions

@ E, denotes an expression E of type .

@ Parentheses and the types of variables may be dropped
when meaning is not lost.
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Semantics of STT: Standard Models

@ A standard model for a language L = (C,7) of STT is a
triple M = (D, I, e) where:

» D={D, :«a €T} is a set of nonempty domains (sets).
» D, ={1,F}, the domain of truth values.

» D, is the set of all functions from D, to Dg.

> | maps each ¢ € C to an element of D_ .

» e maps each o € 7 to a member of D,,.

@ A variable assignment into M is a function that maps
each expression (x : «) to an element of D,.

@ Given a variable assignment ¢ into M, an expression

(x : ), and d € D,, let ¢[(x : a) — d] be the variable
assignment ¢’ into M such that ¢'((x : «)) = d and

©'(v) = p(v) forall v # (x : a).

26



Semantics of STT: Valuation Function

The valuation function for a standard model M = (D, /, e) for
a language L = (C,7) of STT is the binary function VM that
satisfies the following conditions for all variable assignments ¢
into M and all expressions E of L:

1. —
2. Let E €C. Then VY(E) = I(E).
3.
4. Let E be (Ax : . Bg). Then V)/(E) is the f : D, — Dy

Let Eis (x : ). Then V)/(E) = ¢((x : a)).

Let E be F(A). Then VM(E) = VM(F)(VM(A)).

such that, for each d € D, f(d) Vi caray(Bs).
Let E be (E; = E). If V)!(E) = V)/(E), then
V'(E) = T; otherwise VM(E) = F.

Let E be (Ix: a . A). If there is a unique d € D, such
that V" (A) =T, then V/(E) = d; otherwise

pl(x:a)—d]

V' (E) = e(a).
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Abbreviations

means
means
means
MeEans
means

means
MeEans
means
means
means
MeEans
means

(Ax:*x.x)=(Ax:%.x)
(Ax:x.T)=(Ax:%x.x)

A, =F.

—(A, = B,).
(Af:x—(x—x). F(T)T)) =
(A x— (x — ). F(A)(B)).
—(—A. A —B,)

—A, V B..

A, = B,
Ax:a.A)=Nx:a.T)
—(Vx:a.-A))

Ix:a.x#x.
Ix:a.(A.=x=B,) A

(—IA* — X = Ca)
where x does not occur In
A., B, or C,.
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Expressivity
@ Theorem. There is a faithful interpretation of nth-order
logic in STT for all n > 1.

@ Most mathematical notions can be directly and naturally
expressed in STT.

@ Examples:
equiv-rel = Ap: (L — (¢t — %)) .
v X ( )(x) A
Vx,y- - P(X)(y) = py)(x) A
Vx,y:2 e (p(X)() A py)(2) = p(x)(2)
g (

L— 1) Ax . f(g(x))
inv-image = Af : (1 = ¢) . As: (L — %)

[s": (1 —%).Vx:1.5(x) < s(f(x))

L
compose = A\f : (L — 1) . A
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Peano Arithmetic

@ Let PA = (L,I') be the theory of STT such that:
L =({0,S},7) where 7(0) = ¢ and 7(S) =1 — .
[ is the set of the following three formulas:
0 has no predecessor : Vx : ¢ .0 #£ S(x).
Sisinjective: Vx,y:t.S5(x)=5(y)=x=y.
Induction principle :
VP:iL— x.
PO)A(Vx:t.P(x)= P(5(x))) =
Vx:uv. P(x).
@ Theorem (Dedekind, 1888). PA has (up to

isomorphism) a unique standard model M = (D, I, e)
where D, ={0,1,2,...}.
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Incompleteness of STT

Theorem. There is no sound and complete proof system
for STT.

Proof. Suppose P is a sound and complete proof system
for STT. By the soundness of P and Godel's
Incompleteness Theorem, there is a sentence A such that
(1) M = A, where M is the unique standard model for
PA (up to isomorphism), and (2) PA t/p A. By the
completeness of P, (2) implies PA }= A and hence

M = A since M is the only standard model of PA, which
contradicts (1). U
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A Proof System for STT (1)

e Axioms:
Al (Truth Values)
Vi:ix—x.(F(T)AF(F)) < (Vx:x. f(x)).
A2 (Leibniz' Law)
Vx,y:a. (x=y)=(Vp:a—x*.p(x) < ply)).
A3 (Extensionality)
Vi, g:a—0.(f=g)=(Vx:a.f(x)=g(x)).
A4 (Beta-Reduction)
(Ax:a. Bg)(Ay) = Bg[x — Al
provided A, is free for x in Bg.
A5 (Proper Definite Description)
(Alx:a.A)=Al(x:a)— (Ix:a.A).
A6 (Improper Definite Description)

—(d!'x:a. A)=(Ix:a.A) =1,
32



A Proof System for STT (2)

@ Rule of inference:
R (Equality Substitution)
From A, = B, and C, infer the result of
replacing one occurrence of A, in C, by
an occurrence of B,.

@ Call this proof system A.
» Due to Andrews, 1963.

@ Theorem (Jensen, 1969). A plus an axiom of infinity is
equiconsistent with bounded Zermelo set theory.
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General Models

@ A general structure for a language L = (C,7) of STT is a

triple M = (D, I, e) where:

» D={D, :«a €T} is a set of nonempty domains (sets).

» D, ={1,F}, the domain of truth values.

> D, is some set of functions from D, to Dg.
> | maps each ¢ € C to an element of D_ .

» e maps each o € 7 to a member of D,,.

@ M is a general model for L if there is a binary function
VM that satisfies the same conditions as the valuation
function for a standard model.

@ A general model is a nonstandard model if it is not a
standard model.
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Completeness of STT

Theorem (Henkin, 1950). Church’s type theory (and
hence STT) is complete with respect to general models.

Corollary. Church’s type theory (and hence STT) is
compact with respect to general models.

Theorem (Andrews, 1963). A is a sound and complete
proof system for STT with respect to general models.

35



Ways of Making STT More Practical

Make the logic many-sorted by allowing several types of
individuals, e.g., t1,...,¢,.

Add machinery for basic mathematical objects such as
sets, tuples, and lists.

Admit polymorphic operators like (Ax : t . x) by
iIntroducing type variables.

Enrich the type system of STT with new machinery such
as subtypes, dependent types, and user-defined type
constructors.

Modify the semantics of STT to include partial
functions and undefined expressions.
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Theorem Proving Systems Based On Variants of
Simple Type Theory

HOL (Gordon).

IMPS (Farmer, Guttman, Thayer).
Isabelle/HOL (Paulson).
ProofPower (Lemma 1).

PVS (Owre, Rushby, Shankar).
TPS (Andrews).
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