
CAS 734 Winter 2008

02 Review of Mathematical Logic

William M. Farmer

Department of Computing and Software
McMaster University

23 January 2008

Outline

What is mathematical logic?

Syntax and semantics of logical languages

Proof systems

Axiomatic theories

Example: simple type theory

2

What is Mathematical Logic?

Study of the principles underlying mathematical
reasoning.

I Central idea: logical consequence.

Branch of mathematics.

Makes explicit several fundamental distinctions:

I Syntax vs. semantics.
I Language vs. metalanguage.
I Theory vs. model.
I Truth vs. proof.

Principal tools: formal systems called logics.

3

Syntax vs. Semantics

The syntax of a language is concerned with how the
expressions of the language are constructed.

I For example, “the numeral 144 has three digits” is a
statement about syntax.

The semantics of a language is concerned with what the
expressions of the language mean.

I For example, “the number 144 is a perfect square” is a
statement about semantics.

This distinction is crucial in mathematics and computing.

I Confusion between syntax and semantics is the source of
many errors.

Logic carefully disentangles the roles of syntax and
semantics in reasoning.

4

What is a Logic?

Informally, a logic is a system of reasoning.

Formally, a logic is a family of formal languages with:

1. A common syntax.
2. A common semantics.
3. A notion of logical consequence.

A logic may include a proof system for proving that a
given formula is a logical consequence of a given set of
formulas.

Examples:

I Propositional logic.
I First-order logic.
I Simple type theory (higher-order logic).
I Zermelo-Fraenkel (zf) set theory.

5

Language Syntax

A language defines a collection of expressions formed
from:

I Variables.
I Constants (nonlogical constants).
I Constructors (logical constants).

Two kinds of expressions:

I Terms: Denote objects or values.
I Formulas: Make assertions about objects or values.

Some languages have constructors that bind variables
(e.g., ∀, ∃, λ, I, ε, { | }).

6

Language Semantics

A model M for a language L is a pair (D, V) where:

1. D is a set of values called the domain that includes the
truth values t and f.

2. V is a function from the expressions of L to D called the
valuation function.

M satisfies a formula A of L, written M |= A, if
V (A) = t.

M satisfies a set Σ of formulas of L, written M |= Σ, if M
satisfies each A ∈ Σ.

A is a semantic consequence of Σ, written Σ |= A, if
every model for L that satisfies Σ also satisfies A.

A is valid, written |= A, if every model for L satisfies A.

Σ is satisfiable if there exists some model for L that
satisfies Σ.

7

Language vs. Metalanguage

A language is for talking about a certain subject.

A metalanguage for a language L is a language for talking
about L itself.

A natural language, such as English, usually serves as its
own metalanguage.

I As a result, the distinction is not explicit in English.

A formal language, such as a logical or programming
language, usually is not expressive enough to serve as its
own metalanguage.

I A metalanguage of a formal language may be a formal
language, but usually it is only informal.

8

Proof

Mathematical proof is an essential component of the
mathematics process which is unique to mathematics.

It is a method of communication, certification, and
discovery.

An informal proof is a convincing argument that a
statement about a mathematical model is true.

A formal proof is a logical deduction from a set of
premises to a conclusion.

I Can be mechanically checked.

A formal proof can be presented in two ways:

I As a description of the actual deduction.
I As a prescription for creating the deduction.

9

Hilbert-Style Proof Systems

A Hilbert-style proof system P for a language L consists
of:

1. A set of formulas of L called logical axioms.
2. A set of rules of inference.

A proof of A from Σ in P is a finite sequence B1, . . . , Bn

of formulas of L with Bn = A such that each Bi is either
a logical axiom, a member of Σ, or follows from earlier Bj

by one of the rules of inference.

A is syntactic consequence of Σ in P, written Σ `P A, if
there is a proof of A from Σ in P.

A is a theorem in P, written `P A, if there is a proof of
A from ∅ in P.

Σ is consistent in P if not every formula is a syntactic
consequence of Σ in P.

10

Kinds of Proof Systems

Hilbert style.

Symmetric sequent (Gentzen).

Asymmetric sequent.

Natural deduction (Gentzen, Quine, Fitch, Berry).

Semantic tableaux (Beth, Hintikka).

Resolution (J. Robinson).

11

Soundness and Completeness

Let P be a proof system for a language L.

P is sound if

Σ `P A implies Σ |= A.

P is complete if

Σ |= A implies Σ `P A.

A unsound proof system is not usually very useful, while a
sound but incomplete proof system can be quite useful.

12

Axiomatic Theories

A axiomatic theory is a pair T = (L, Γ) where:

1. L is a language (the language of T).
2. Γ is a set of formulas of L (the axioms of T).

M is a model of T , written M |= T , if M |= Γ.

A is valid in T , written T |= A, if Γ |= A.

A is a theorem of T in P, written T `P A, if Γ `P A.

T is satisfiable if Γ is satisfiable.

T is consistent in P if Γ is consistent in P.

13

Theory vs. Model

A model for a language is a concrete mathematical model.

A axiomatic theory is an abstract mathematical model.

An axiomatic theory can be viewed as a specification of
its models.

I A theory is to a model as a specification is to an
implementation.

Axiomatic theories fall into two categories:

I Those that are intended to describe a single model
(e.g., a theory of natural number arithmetic).

I Those that are described a collection of models
(e.g., a theory of monoids).

14

Truth vs. Proof

Semantics Syntax

truth proof
semantic consequence syntactic consequence
A is valid A is a theorem in P
|= A `P A
A is valid in T A is a theorem of T in P
T |= A T `P A
T is satisfiable T is consistent in P

Semantic consequence and syntactic consequence are
different forms of logical consequence.

The semantic and syntactic notions are equivalent in the
most common logics:

I Propositional logic.
I First-order logic (Gödel, 1930).
I Simple type theory (Henkin, 1950).

15

Mathematical Problems: Fundamental Form

Most mathematical problems can be expressed as
statements of the form

T |= A

where T is an axiomatic theory and A is a formula.

There are three basic ways of deciding whether or not
T |= A:

1. Model checking:
Show that M |= A for each model M of T .

2. Proof:
Show T `P A for some sound proof system P.

3. Counterexample:
Show M |= ¬A for some model M of T .

16

What is Simple Type Theory?

A simple, elegant, highly expressive, and practical logic.

I Familiar to some computer scientists but not to many
mathematicians, engineers, and other scientists.

Most popular form of type theory.

I Types are used to classify expressions by value and
control the formation of expressions.

I Classical: nonconstructive, 2-valued.
I Higher order: quantification over functions.
I Can be viewed as a “function theory”.

Natural extension of first-order logic.

I Based on the same principles as first-order logic.
I Includes nth-order logic for all n ≥ 1.

We will present a simple, pure form of simple type theory
called stt.

17

History of Simple Type Theory
1908 Russell

Ramified theory of types.
1910 Russell, Whitehead

Principia Mathematica.
1920s Chwistek, Ramsey

Simple theory of types (simple type theory).
1920–30s Carnap, Gödel, Tarski, Quine

Detailed formulations of simple type theory.
1940 Church

Simple type theory with lambda-notation.
1950 Henkin

General models and completeness theorem.
1963 Henkin, Andrews

Concise formulation based on equality.
1980-90s HOL, IMPS, Isabelle, ProofPower, PVS, TPS

Higher-order theorem proving systems.

18

References: Key Historical Publications

1. B. Russell, “Mathematical Logic as Based on the Theory
of types”, American Journal of Mathematics, 30:222–262,
1908.

2. A. N. Whitehead and B. Russell, Principia Mathematica,
Cambridge University Press, 1910–13.

3. A. Church, “A Formulation of the Simple Theory of
Types”, Journal of Symbolic Logic, 5:56–68, 1940.

4. L. Henkin, “Completeness in the Theory of Types”,
Journal of Symbolic Logic, 15:81–91, 1950.

5. L. Henkin, “A Theory of Propositional Types”,
Fundamenta Mathematicae, 52:323–344, 1963.

6. P. B. Andrews, “A Reduction of the Axioms for the
Theory of Propositional Types”, Fundamenta
Mathematicae 52:345–350, 1963.

19

References: Introductions

1. P. B. Andrews, An Introduction to Mathematical Logic
and Type Theory: To Truth through Proof, Second
Edition, Kluwer, 2002.

2. W. M. Farmer, ”A basic extended simple type theory”,
SQRL Report No. 14, 12 pp., McMaster University, 2003
(revised 2004).

3. W. M. Farmer, “The Seven Virtues of Simple Type
Theory”, Journal of Applied Logic, forthcoming.

20

Syntax of stt: Types

A type of stt is defined by the following rules:

T1
type[ι]

(Type of individuals)

T2
type[∗]

(Type of truth values)

T3
type[α], type[β]

type[(α → β)]
(Function type)

Let T denote the set of types of stt.

21

Syntax of stt: Symbols

The logical symbols of stt are:

I Function application: @.
I Function abstraction: λ.
I Equality: =.
I Definite description: I (capital iota).
I Type binding: : (colon).
I An infinite set V of symbols used to construct variables.

A language of stt is a pair L = (C, τ) where:

I C is a set of symbols called constants.
I τ : C → T is a total function (which assigns a type to

each constant).

22

@

Syntax of stt: Expressions (1)

An expression E of type α of a stt language L = (C, τ) is
defined by the following rules:

E1
x ∈ V , type[α]

exprL[(x : α), α]
(Variable)

E2
c ∈ C

exprL[c , τ(c)]
(Constant)

E3
exprL[A, α], exprL[F , (α → β)]

exprL[(F @ A), β]
(Application)

E4
x ∈ V , type[α], exprL[B , β]

exprL[(λ x : α . B), (α → β)]
(Abstraction)

23

Syntax of stt: Expressions (2)

E5
exprL[E1, α], exprL[E2, α]

exprL[(E1 = E2), ∗]
(Equality)

E6
x ∈ V , type[α], exprL[A, ∗]

exprL[(I x : α . A), α]
(Definite description)

24

Syntax of stt: Conventions

Eα denotes an expression E of type α.

F (A) denotes (F @ A).

Parentheses and the types of variables may be dropped
when meaning is not lost.

25

Semantics of stt: Standard Models

A standard model for a language L = (C, τ) of stt is a
triple M = (D, I , e) where:

I D = {Dα : α ∈ T } is a set of nonempty domains (sets).
I D∗ = {t, f}, the domain of truth values.
I Dα→β is the set of all functions from Dα to Dβ.
I I maps each c ∈ C to an element of Dτ(c).
I e maps each α ∈ T to a member of Dα.

A variable assignment into M is a function that maps
each expression (x : α) to an element of Dα.

Given a variable assignment ϕ into M , an expression
(x : α), and d ∈ Dα, let ϕ[(x : α) 7→ d] be the variable
assignment ϕ′ into M such that ϕ′((x : α)) = d and
ϕ′(v) = ϕ(v) for all v 6= (x : α).

26

Semantics of stt: Valuation Function

The valuation function for a standard model M = (D, I , e) for
a language L = (C, τ) of stt is the binary function V M that
satisfies the following conditions for all variable assignments ϕ
into M and all expressions E of L:

1. Let E is (x : α). Then V M
ϕ (E) = ϕ((x : α)).

2. Let E ∈ C. Then V M
ϕ (E) = I (E).

3. Let E be (F @ A). Then V M
ϕ (E) = V M

ϕ (F)(V M
ϕ (A)).

4. Let E be (λ x : α . Bβ). Then V M
ϕ (E) is the f : Dα → Dβ

such that, for each d ∈ Dα, f (d) = V M
ϕ[(x :α) 7→d](Bβ).

5. Let E be (E1 = E2). If V M
ϕ (E1) = V M

ϕ (E2), then
V M

ϕ (E) = t; otherwise V M
ϕ (E) = f.

6. Let E be (I x : α . A). If there is a unique d ∈ Dα such
that V M

ϕ[(x :α) 7→d](A) = t, then V M
ϕ (E) = d ; otherwise

V M
ϕ (E) = e(α).

27

Abbreviations
T means (λ x : ∗ . x) = (λ x : ∗ . x).
F means (λ x : ∗ . T) = (λ x : ∗ . x).
(¬A∗) means A∗ = F.
(Aα 6= Bα) means ¬(Aα = Bα).
(A∗ ∧ B∗) means (λ f : ∗ → (∗ → ∗) . f (T)(T)) =

(λ f : ∗ → (∗ → ∗) . f (A∗)(B∗)).
(A∗ ∨ B∗) means ¬(¬A∗ ∧ ¬B∗).
(A∗ ⇒ B∗) means ¬A∗ ∨ B∗.
(A∗ ⇔ B∗) means A∗ = B∗.
(∀ x : α . A∗) means (λ x : α . A∗) = (λ x : α . T).
(∃ x : α . A∗) means ¬(∀ x : α . ¬A∗).
⊥α means I x : α . x 6= x .
if(A∗, Bα, Cα) means I x : α . (A∗ ⇒ x = Bα) ∧

(¬A∗ ⇒ x = Cα)
where x does not occur in
A∗, Bα, or Cα.

28

Expressivity

Theorem. There is a faithful interpretation of nth-order
logic in stt for all n ≥ 1.

Most mathematical notions can be directly and naturally
expressed in stt.

Examples:

equiv-rel = λ p : (ι → (ι → ∗)) .

∀ x : ι . p(x)(x) ∧
∀ x , y : ι . p(x)(y) ⇒ p(y)(x) ∧
∀ x , y , z : ι . (p(x)(y) ∧ p(y)(z)) ⇒ p(x)(z)

compose = λ f : (ι → ι) . λ g : (ι → ι) . λ x : ι . f (g(x))

inv-image = λ f : (ι → ι) . λ s : (ι → ∗) .

I s ′ : (ι → ∗) . ∀ x : ι . s ′(x) ⇔ s(f (x))

29

Peano Arithmetic

Let PA = (L, Γ) be the theory of stt such that:

L = ({0,S}, τ) where τ(0) = ι and τ(S) = ι → ι.
Γ is the set of the following three formulas:

0 has no predecessor : ∀ x : ι . 0 6= S(x).

S is injective : ∀ x , y : ι . S(x) = S(y) ⇒ x = y .

Induction principle :

∀P : ι → ∗ .

P(0) ∧ (∀ x : ι . P(x) ⇒ P(S(x))) ⇒
∀ x : ι . P(x).

Theorem (Dedekind, 1888). PA has (up to
isomorphism) a unique standard model M = (D, I , e)
where Dι = {0, 1, 2, . . .}.

30

Incompleteness of stt

Theorem. There is no sound and complete proof system
for stt.

Proof. Suppose P is a sound and complete proof system
for stt. By the soundness of P and Gödel’s
Incompleteness Theorem, there is a sentence A such that
(1) M |= A, where M is the unique standard model for
PA (up to isomorphism), and (2) PA 6`P A. By the
completeness of P, (2) implies PA 6|= A and hence
M 6|= A since M is the only standard model of PA, which
contradicts (1). �

31

A Proof System for stt (1)

Axioms:
A1 (Truth Values)

∀ f : ∗ → ∗ . (f (T∗) ∧ f (F∗)) ⇔ (∀ x : ∗ . f (x)).

A2 (Leibniz’ Law)

∀ x , y : α . (x = y) ⇒ (∀ p : α → ∗ . p(x) ⇔ p(y)).

A3 (Extensionality)

∀ f , g : α → β . (f = g) = (∀ x : α . f (x) = g(x)).

A4 (Beta-Reduction)

(λ x : α . Bβ)(Aα) = Bβ[x 7→ Aα]

provided Aα is free for x in Bβ.

A5 (Proper Definite Description)

(∃ ! x : α . A) ⇒ A[(x : α) 7→ (I x : α . A)].

A6 (Improper Definite Description)

¬(∃ ! x : α . A) ⇒ (I x : α . A) = ⊥α.
32

A Proof System for stt (2)

Rule of inference:

R (Equality Substitution)

From Aα = Bα and C∗ infer the result of

replacing one occurrence of Aα in C∗ by

an occurrence of Bα.

Call this proof system A.

I Due to Andrews, 1963.

Theorem (Jensen, 1969). A plus an axiom of infinity is
equiconsistent with bounded Zermelo set theory.

33

General Models

A general structure for a language L = (C, τ) of stt is a
triple M = (D, I , e) where:

I D = {Dα : α ∈ T } is a set of nonempty domains (sets).
I D∗ = {t, f}, the domain of truth values.
I Dα→β is some set of functions from Dα to Dβ .
I I maps each c ∈ C to an element of Dτ(c).
I e maps each α ∈ T to a member of Dα.

M is a general model for L if there is a binary function
V M that satisfies the same conditions as the valuation
function for a standard model.

A general model is a nonstandard model if it is not a
standard model.

34

Completeness of stt

Theorem (Henkin, 1950). Church’s type theory (and
hence stt) is complete with respect to general models.

Corollary. Church’s type theory (and hence stt) is
compact with respect to general models.

Theorem (Andrews, 1963). A is a sound and complete
proof system for stt with respect to general models.

35

Ways of Making stt More Practical

Make the logic many-sorted by allowing several types of
individuals, e.g., ι1, . . . , ιn.

Add machinery for basic mathematical objects such as
tuples, lists, and sets.

Add indefinite description.

Modify the semantics of stt to admit undefined
expressions and partial functions.

Admit polymorphic operators like (λ x : µ . x) by
introducing type variables.

Admit subtypes.

Admit dependent types.

36

Theorem Proving Systems Based On Variants of

Simple Type Theory

HOL (Gordon).

IMPS (Farmer, Guttman, Thayer).

Isabelle/HOL (Paulson).

ProofPower (Lemma 1).

PVS (Owre, Rushby, Shankar).

TPS (Andrews).

37

