
CAS 734 Winter 2008

03 Theory Development Techniques

William M. Farmer

Department of Computing and Software
McMaster University

24 January 2008



Axiomatic Theories as Mathematical Models

Almost any mathematical model can be represented as an
axiomatic theory.

Models that axiomatic theories are good at representing:

I Mathematical structures, algebras, and data types.

Models that axiomatic theories are not as good at
representing:

I Models that have a mutable state.
I Algorithmic theories.
I Models in which expressions are constructed and

evaluated.

Axiomatic theories are the basis of the axiomatic method.
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What is the Axiomatic Method?

1. A mathematical model is expressed as an axiomatic
theory in a logic.

2. New concepts are introduced by making definitions.

3. Assertions about the model are stated as theorems and
proved from the theory’s axioms using the laws of the
logic.

Notes:

The axiomatic method is a method of communication,
not a method of discovery (Lakatos).

The axiomatic method can be used as a method of
organization and a method of certification.
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Short History of the Axiomatic Method

Euclid (325–265 BC) used the axiomatic method to
present the mathematics known in his time in the
Elements. The axioms were considered truths.
The development of noneuclidean geometry by Bolyai,
Gauss, and Lobachevskii (early 1800s) showed that
axioms may be considered as just assumptions.
Whitehead and Russell formalized a portion of
mathematics in the Principia Mathematica (1910–13).
Bourbaki (mid 1900s) used the axiomatic method to
codify mathematics in the 30 volume Eléments de
mathématique.
Jutting (1970s) used De Bruijn’s Automath proof
assistant to formalize and verify Landau’s Grundlagen der
Analysis.
Several libraries of formalized mathematics have been
developed since the late 1980s using interactive theorem
provers. 4



Benefits of Axiomatic Theories

Conceptual clarity: Inessential details are omitted.

Generality: Theorems hold in all models.

Dual purpose: A theory can be viewed as:

1. An abstract mathematical model.
2. A specification of a collection of mathematical models.
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Theory Development as a Special Case of the

Mathematics Process

1. Theory creation.

I Built from scratch.
I Extension of a theory.
I Union of several theories.
I Renaming of a theory.
I Instance of a parameterized theory.

2. Theory exploration.

I Notation introduction.
I Concept introduction.
I Conjecture proving.
I Computation.

3. Theory connection.

I Theory interpretation.
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Theory Extension

To make our presentation concrete, we will assume that
we are working in STT.

Let Li = (C i , τi) be a language (of STT) for i = 1, 2. L2

is an extension of L1 (and L1 is a sublanguage of L2),
written L1 ≤ L2, if C1 ⊆ C2 and τ1 is a subfunction of τ2.

Let Ti = (Li , Γi) be a theory (of STT) for i = 1, 2. T2 is
an extension of T1 (and T1 is a subtheory of T2), written
T1 ≤ T2, if L1 ≤ L2 and Γ1 ⊆ Γ2.

Hence an extension of a theory T is obtained by adding
new vocabulary and axioms to T .

A theory development can be viewed as a sequence of
theory extensions.

Danger of theory extension: The new machinery may
compromise the old machinery by changing the behavior
of the constants or by making the theory unsatisfiable.
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Conservative Extension

Intuitively, an extension of a theory T is “conservative” if
it adds new machinery to T without compromising the
original machinery.

T2 is a conservative extension of T1, written T1 E T2, if
T1 ≤ T2 and, for all formulas A of L1, T2 |= A implies
T1 |= A.

Proposition (Transitivity). If T1 E T2 and T2 E T3,
then T1 E T3.

Proposition (Satisfiability). If T1 E T2 and T1 is
satisfiable, then T2 is satisfiable.

Hence a conservative extension is a “safe” extension.

8



Model Conservative Extension

Let Mi = (Di , Ii , ei) be a standard model for Li for
i = 1, 2. M2 is an expansion of M1 if L1 ≤ L2, D1 = D2,
I1 is a subfunction of I2, and e1 = e2.

T2 is a model conservative extension of T1, written
T1 Em T2, if T1 ≤ T2 and every standard model of T1 has
an expansion to L2 that is a model of T2.

Hence a model conservative extension of T is an
extension of T that “preserves” the models of T .

Proposition (Transitivity). If T1 Em T2 and T2 Em T3,
then T1 Em T3.

Proposition. If T1 Em T2, then T1 E T2. (The converse
is false.)
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Kinds of Conservative Extensions

Model conservative.

I Addition of a theorem to a theory.
I Addition of a totally specified set of constants

(definition).
I Addition of a partially specified set of constants (profile).

Non model conservative.

I Addition of new elements to the models of the theory.
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Definitional Mechanisms

Notational definitions.

I Change syntax but not semantics.

Definitions.

I Introduce a totally specified concept.

Profiles.

I Introduce a partially specified concept.
I Also called specifications and constraints.
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Notational Definitions

A notational definition introduces alternate syntax that
can be used in place of official syntax.

I Usually the alternate syntax is simpler than the
corresponding official syntax.

I Sometimes the alternate syntax is purely external, while
the official syntax is purely internal.

I Notational definitions often hide information such as
types and parenthesization.

Notational definitions are intended to make it easier for
the user to read and write expressions.

I They should have no effect on the system’s logic,
theories, and reasoning mechanisms.

I Notational definitions that hide information may
sometimes confuse users.
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Examples of Notational Definitions

Macro-abbreviations

Alternate (usually shorter) names

Operator syntax (e.g, prefix, infix, postfix, etc.)

Operator precedence

Symbol overloading
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Explicit Definitions

Let T = (L, Γ) be a theory where L = (C, τ), a be a new
constant not in L, E be a closed expression of type α of
L, and L′ = (C ∪ {a}, τ ′) where τ ′(c) = τ(c) for all a ∈ C
with c 6= a and τ ′(a) = α.

An explicit definition in T is a pair D = (a, E ) such that

T |= ∃ x : α . x = E .

a = E is called the defining axiom of D.

The extension of T by D, written T [D], is the theory
T ′ = (L′, Γ ∪ {a = E}).
Proposition. T Em T [D].

The new constant a can be eliminated from expressions of
L′ by using the defining axiom of D as a rewrite rule.
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Implicit Definitions

Let T = (L, Γ) be a theory where L = (C, τ), a be a new
constant not in L, A is a formula of L containing one free
variable x of type α, and L′ = (C ∪ {a}, τ ′) where
τ ′(c) = τ(c) for all a ∈ C with c 6= a and τ ′(a) = α.

An implicit definition in T is a pair D = (a, P) where
P = λ x : α . A such that

T |= ∃ ! x : α . A.

P(a) is called the defining axiom of D.

The extension of T by D, written T [D], is the theory
T ′ = (L′, Γ ∪ {P(a)}).
Proposition. T Em T [D].

The new constant a can be eliminated from expressions of
L′ by using the equation a = I x : α . A as a rewrite rule.
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Mutual Definitions

Let T = (L, Γ) be a theory where L = (C, τ), a1, . . . , an

be a list of new constants not in L, A is a formula of L
containing n free variables x1, . . . , xn of type α1, . . . , αn,
and L′ = (C ∪ {a, . . . , an}, τ ′) where τ ′(c) = τ(c) for all
a ∈ C with c 6∈ {a1, . . . , an} and τ ′(ai) = αi for all i with
1 ≤ i ≤ n.

An mutual definition in T is a pair D = (〈a1, . . . , an〉, P)
where P = λ x1 : α1 . · · ·λ xn : αn . A such that

T |= ∃ ! x1 : α1 . · · · ∃ ! xn : αn . A.

P(a1) · · · (an) is called the defining axiom of D.

The extension of T by D, written T [D], is the theory
T ′ = (L′, Γ ∪ {P(a1) · · · (an)}).
Proposition. T Em T [D].
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Profiles

Let T = (L, Γ) be a theory where L = (C, τ), a be a new
constant not in L, A is a formula of L containing one free
variable x of type α, and L′ = (C ∪ {a}, τ ′) where
τ ′(c) = τ(c) for all a ∈ C with c 6= a and τ ′(a) = α.

A profile in T is a pair S = (a, P) where P = λ x : α . A
such that

T |= ∃ x : α . A.

P(a) is called the profiling axiom of S .

The extension of T by S , written T [S ], is the theory
T ′ = (L′, Γ ∪ {P(a)}).
Proposition. T Em T [S ].

It may not be possible to eliminate the new constant a
from expressions of L′ (even using indefinite description).
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Mutual Profiles

Let T = (L, Γ) be a theory where L = (C, τ), a1, . . . , an

be a list of new constants not in L, A is a formula of L
containing n free variables x1, . . . , xn of type α1, . . . , αn,
and L′ = (C ∪ {a, . . . , an}, τ ′) where τ ′(c) = τ(c) for all
a ∈ C with c 6∈ {a1, . . . , an} and τ ′(ai) = αi for all i with
1 ≤ i ≤ n.

A mutual profile in T is a pair S = (〈a1, . . . , an〉, P)
where P = λ x1 : α1 . · · ·λ xn : αn . A such that

T |= ∃ x1 : α1 . · · · ∃ xn : αn . A.

P(a1) · · · (an) is called the profiling axiom of S .

The extension of T by S , written T [S ], is the theory
T ′ = (L′, Γ ∪ {P(a1) · · · (an)}).
Proposition. T Em T [S ].
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Recursive Definitions

A recursive definition is an implicit definition (a, P) such
that the defining axiom P(a) relates a to itself.

A mutual recursive definition is a mutual definition
(〈a1, . . . , an〉, P) such that the defining axiom
P(a1) · · · (an) relates a1, . . . , an to each other.

A (mutual) recursive definition can be expressed as an
explicit definition using definite description.

A (mutual) recursive definition often provides a way of
computing the value of certain expressions involving the
defined constants.

I Example: The value of an application f (a) where f is a
recursively defined function.

I Example: The value of a membership formula a ∈ s
where s is a recursively (inductively) defined set.
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Inductive Data Types

An inductive data type consists of:

1. A domain D of values (i.e., data elements).
2. A set of constructors that “construct” the values in D.
3. A set of selectors that “deconstruct” the values in D.
4. A sentence that states that each member of D can only

be constructed in one way (i.e., “no confusion”).
5. A sentence that states that D is inductively defined by

the constructors (i.e., “no junk”).
6. A sentence that defines the selectors.

An inductive type specification in T is a tuple
S = (α, 〈c1, . . . , cm〉, 〈s1, . . . , sn〉, A1, A2, A3) whose
components correspond to the components of an
inductive data type.

Proposition. The extension of T by S is model
conservative if there exists a domain of values, a set of
constructors, and a set of selectors that satisfy A1, A2, A3.
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Proliferation of Conservative Extensions

Problem: Liberal use of conservative extension results in
a proliferation of different theories that are essentially
equivalent.

Solution:

1. Whenever a theory T is conservatively extended to T ′,
overwrite T with T ′.

2. Record the “development” of a theory (e.g., to facilitate
linking theories with interpretations).
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Conservative Stacks

A conservative stack is a finite sequence Σ = 〈T0, . . . , Tn〉
of theories such that Ti E Ti+1 for all i with 0 ≤ i < n.

I T0 is the base theory of Σ.
I Tn is the theory of Σ.

A conservative stack Σ = 〈T0, . . . , Tn〉 is conservatively
extended by overwriting Σ with Σ′ = 〈T0, . . . , Tn, Tn+1〉
where Tn E Tn+1.

A theory can be implemented as a theory object that
includes a conservative stack Σ and a set of the currently
known theorems of the theory of Σ.
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